107 research outputs found

    Ceers key paper. I. An early look into the first 500myr of galaxy formation with jwst

    Get PDF
    We present an investigation into the first 500 Myr of galaxy evolution from the Cosmic Evolution Early Release Science (CEERS) survey. CEERS, one of 13 JWST ERS programs, targets galaxy formation from z ∼ 0.5 to >10 using several imaging and spectroscopic modes. We make use of the first epoch of CEERS NIRCam imaging, spanning 35.5 arcmin2 , to search for candidate galaxies at z > 9. Following a detailed data reduction process implementing several custom steps to produce high-quality reduced images, we perform multiband photometry across seven NIRCam broad- and medium-band (and six Hubble broadband) filters focusing on robust colors and accurate total fluxes. We measure photometric redshifts and devise a robust set of selection criteria to identify a sample of 26 galaxy candidates at z ∼ 9–16. These objects are compact with a median half-light radius of ∼0.5 kpc. We present an early estimate of the z ∼ 11 rest-frame ultraviolet (UV) luminosity function, finding that the number density of galaxies at MUV ∼ −20 appears to evolve very little from z ∼ 9 to 11. We also find that the abundance (surface density [arcmin−2 ]) of our candidates exceeds nearly all theoretical predictions. We explore potential implications, including that at z > 10, star formation may be dominated by top-heavy initial mass functions, which would result in an increased ratio of UV light per unit halo mass, though a complete lack of dust attenuation and/or changing star formation physics may also play a role

    A Mixture of LBG Overdensities in the Fields of Three 6<z<76 < z < 7 Quasars: Implications for the Robustness of Photometric Selection

    Full text link
    The most luminous quasars at z>6z > 6 are suspected to be both highly clustered and reside in the most massive dark matter halos in the early Universe, making them prime targets to search for galaxy overdensities and/or protoclusters. We search for Lyman-break dropout-selected galaxies using HST WFC3/ACS broadband imaging in the fields of three 6<z<76 < z < 7 quasars, as well as their simultaneously observed coordinated-parallel fields, and constrain their photometric redshifts using EAZY. One field, J0305-3150, shows a volume density 10×\times higher than the blank-field UV luminosity function (UVLF) at MUV<20_{UV} < -20, with tentative evidence of a 3σ\sigma overdensity in its parallel field located 15 cMpc away. Another field, J2054-0005, shows an angular overdensity within 500 ckpc from the quasar but still consistent with UVLF predictions within 3σ\sigma, while the last field, J2348-3054, shows no enhancement. We discuss methods for reducing uncertainty in overdensity measurements when using photometric selection and show that we can robustly select LBGs consistent with being physically associated with the quasar, corroborated by existing JWST/NIRCam WFSS data in the J0305 field. Even accounting for incompleteness, the overdensities in J0305 and J2054 are higher for brighter galaxies at short angular separations, suggesting preferential enhancement of more massive galaxies in the immediate vicinity of the quasar. Finally, we compare the LBG population with previously-identified [CII] and mm-continuum companions; the LBG overdensities are not accompanied by an enhanced number of dusty galaxies, suggesting that the overdense quasar fields are not in the bursty star-forming phase sometimes seen in high-redshift protoclusters.Comment: 22 pages (main text), 12 figures, 10 tables, 2 appendices. Final version after addressing referee report, accepted to ApJ May 202

    HST Grism-derived Forecasts for Future Galaxy Redshift Surveys

    Get PDF
    The mutually complementary Euclid and Roman galaxy redshift surveys will use Hα- and [O III]-selected emission-line galaxies (ELGs) as tracers of the large-scale structure at 0.9 ≾ z ≾ 1.9 (Hα) and 1.5 ≾ z ≾ 2.7 ([O III]). It is essential to have a reliable and sufficiently precise knowledge of the expected numbers of Hα-emitting galaxies in the survey volume in order to optimize these redshift surveys for the study of dark energy. Additionally, these future samples of ELGs will, like all slitless spectroscopy surveys, be affected by a complex selection function that depends on galaxy size and luminosity, line equivalent width (EW), and redshift errors arising from the misidentification of single ELGs. Focusing on the specifics of the Euclid survey, we combine two slitless spectroscopic WFC3-IR data sets—3D-HST+AGHAST and the WFC3 Infrared Spectroscopic Parallel survey—to construct a Euclid-like sample that covers an area of 0.56 deg² and includes 1277 ELGs. We detect 1091 (~3270 deg⁻²) Hα+[N II]-emitting galaxies in the range 0.9 ≤ z ≤ 1.6 and 162 (~440 deg⁻²) [O III] λ5007 emitters over 1.5 ≤ z ≤ 2.3 with line fluxes ≥2 × 10⁻¹⁶ erg s⁻¹ cm⁻². The median of the Hα+[N II] EW distribution is ~250 Å, and the effective radii of the continuum and Hα+[N II] emission are correlated with a median of ~0.”38 and significant scatter (σ ~ 0.”2–0.”35). Finally, we explore the prevalence of redshift misidentification in future Euclid samples, finding potential contamination rates of ~14%–20% and ~6% down to 2 × 10⁻¹⁶ erg s⁻¹ cm−2 and 6 × 10⁻¹⁷ erg s⁻¹ cm⁻², respectively, although with increased wavelength coverage these percentages drop to nearly zero

    Semi-analytic forecasts for Roman -- the beginning of a new era of deep-wide galaxy surveys

    Full text link
    The Nancy Grace Roman Space Telescope, NASA's next flagship observatory, will redefine deep-field galaxy survey with a field of view two orders of magnitude larger than Hubble and an angular resolution of matching quality. These future deep-wide galaxy surveys necessitate new simulations to forecast their scientific output and to optimise survey strategies. In this work, we present five realizations of 2-deg^2 lightcones, containing a total of >25 million simulated galaxies with -16 < MUV < -25 spanning z ~ 0 to 10. This dataset enables a new set of experiments with the impacts of survey size on the derived galaxy formation and cosmological constraints. The intrinsic and observable galaxy properties are predicted using a well-established, physics-based semi-analytic modelling approach. We provide forecasts for number density, cosmic SFR, field-to-field variance, and angular two-point correlation functions, and demonstrate how the future wide-field surveys will be able to improve these measurements relative to current generation surveys. We also present a comparison between these lightcones and others that have been constructed with empirical models. The mock lightcones are designed to facilitate the exploration of multi-instrument synergies and connecting with current generation instruments and legacy surveys. In addition to Roman, we also provide photometry for a number of other instruments on upcoming facilities, including Euclid and Rubin, as well as the instruments that are part of many legacy surveys. Full object catalogues and data tables for the results presented in this work are made available through a web-based, interactive portal https://www.simonsfoundation.org/semi-analytic-forecasts.Comment: 25 pages, 16 figures. Accepted for publication in MNRA
    corecore