25 research outputs found

    CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson\u27s disease

    Get PDF
    BACKGROUND: Parkinson\u27s disease is characterized by a progressive loss of dopaminergic neurons in the substantia nigra. The cause of the neurodegeneration is unknown. Neuroinflammation has been clearly shown in Parkinson\u27s disease and may be involved in the progressive nature of the disease. Microglia are capable of producing neuronal damage through the production of bioactive molecules such as cytokines, as well as reactive oxygen species (ROS), and nitric oxide (NO). The inflammatory response in the brain is tightly regulated at multiple levels. One form of immune regulation occurs via neurons. Fractalkine (CX3CL1), produced by neurons, suppresses the activation of microglia. CX3CL1 is constitutively expressed. It is not known if addition of exogenous CX3CL1 beyond otherwise physiologically normal levels could decrease microglia activation and thereby minimize the secondary neurodegeneration following a neurotoxic insult. METHODS: The intrastriatal 6-hydroxydopamine (6-OHDA) rat model of Parkinson disease, was used to test the hypothesis that exogenous CX3CL1 could be neuroprotective. Treatment with recombinant CX3CL1 was delivered to the striatum by an osmotic minipump for 28 days beginning 7 days after the initial insult. Unbiased stereological methods were used to quantify the lesion size in the striatum, the amount of neuronal loss in the substantia nigra, and the amount of microglia activation. RESULTS: As hypothesized, CX3CL1 was able to suppress this microglia activation. The reduced microglia activation was found to be neuroprotective as the CX3CL1 treated rats had a smaller lesion volume in the striatum and importantly significantly fewer neurons were lost in the CX3CL1 treated rats. CONCLUSION: These findings demonstrated that CX3CL1 plays a neuroprotective role in 6-OHDA-induced dopaminergic lesion and it might be an effective therapeutic target for many neurodegenerative diseases, including Parkinson disease and Alzheimer disease, where inflammation plays an important role

    CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson\u27s disease

    Get PDF
    BACKGROUND: Parkinson\u27s disease is characterized by a progressive loss of dopaminergic neurons in the substantia nigra. The cause of the neurodegeneration is unknown. Neuroinflammation has been clearly shown in Parkinson\u27s disease and may be involved in the progressive nature of the disease. Microglia are capable of producing neuronal damage through the production of bioactive molecules such as cytokines, as well as reactive oxygen species (ROS), and nitric oxide (NO). The inflammatory response in the brain is tightly regulated at multiple levels. One form of immune regulation occurs via neurons. Fractalkine (CX3CL1), produced by neurons, suppresses the activation of microglia. CX3CL1 is constitutively expressed. It is not known if addition of exogenous CX3CL1 beyond otherwise physiologically normal levels could decrease microglia activation and thereby minimize the secondary neurodegeneration following a neurotoxic insult. METHODS: The intrastriatal 6-hydroxydopamine (6-OHDA) rat model of Parkinson disease, was used to test the hypothesis that exogenous CX3CL1 could be neuroprotective. Treatment with recombinant CX3CL1 was delivered to the striatum by an osmotic minipump for 28 days beginning 7 days after the initial insult. Unbiased stereological methods were used to quantify the lesion size in the striatum, the amount of neuronal loss in the substantia nigra, and the amount of microglia activation. RESULTS: As hypothesized, CX3CL1 was able to suppress this microglia activation. The reduced microglia activation was found to be neuroprotective as the CX3CL1 treated rats had a smaller lesion volume in the striatum and importantly significantly fewer neurons were lost in the CX3CL1 treated rats. CONCLUSION: These findings demonstrated that CX3CL1 plays a neuroprotective role in 6-OHDA-induced dopaminergic lesion and it might be an effective therapeutic target for many neurodegenerative diseases, including Parkinson disease and Alzheimer disease, where inflammation plays an important role

    Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurogenesis continues to occur throughout life but dramatically decreases with increasing age. This decrease is mostly related to a decline in proliferative activity as a result of an impoverishment of the microenvironment of the aged brain, including a reduction in trophic factors and increased inflammation.</p> <p>Results</p> <p>We determined that human umbilical cord blood mononuclear cells (UCBMC) given peripherally, by an intravenous injection, could rejuvenate the proliferative activity of the aged neural stem/progenitor cells. This increase in proliferation lasted for at least 15 days after the delivery of the UCBMC. Along with the increase in proliferation following UCBMC treatment, an increase in neurogenesis was also found in the aged animals. The increase in neurogenesis as a result of UCBMC treatment seemed to be due to a decrease in inflammation, as a decrease in the number of activated microglia was found and this decrease correlated with the increase in neurogenesis.</p> <p>Conclusion</p> <p>The results demonstrate that a single intravenous injection of UCBMC in aged rats can significantly improve the microenvironment of the aged hippocampus and rejuvenate the aged neural stem/progenitor cells. Our results raise the possibility of a peripherally administered cell therapy as an effective approach to improve the microenvironment of the aged brain.</p

    Delta Opioid Receptor and Its Peptide: A Receptor-Ligand Neuroprotection

    No full text
    In pursuit of neurological therapies, the opioid system, specifically delta opioid receptors and delta opioid peptides, demonstrates promising therapeutic potential for stroke, Parkinson’s disease, and other degenerative neurological conditions. Recent studies offer strong evidence in support of the therapeutic use of delta opioid receptors, and provide insights into the underlying mechanisms of action. Delta opioid receptors have been shown to confer protective effects by mediating ionic homeostasis and activating endogenous neuroprotective pathways. Additionally, delta opioid agonists such as (D-Ala 2, D-Leu 5) enkephalin (DADLE) have been shown to decrease apoptosis and promote neuronal survival. In its entirety, the delta opioid system represents a promising target for neural therapies

    A spirulina-enhanced diet provides neuroprotection in an α-synuclein model of Parkinson's disease.

    Get PDF
    Inflammation in the brain plays a major role in neurodegenerative diseases. In particular, microglial cell activation is believed to be associated with the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). An increase in microglia activation has been shown in the substantia nigra pars compacta (SNpc) of PD models when there has been a decrease in tyrosine hydroxylase (TH) positive cells. This may be a sign of neurotoxicity due to prolonged activation of microglia in both early and late stages of disease progression. Natural products, such as spirulina, derived from blue green algae, are believed to help reverse this effect due to its anti-inflammatory/anti-oxidant properties. An adeno-associated virus vector (AAV9) for α-synuclein was injected in the substantia nigra of rats to model Parkinson's disease and to study the effects of spirulina on the inflammatory response. One month prior to surgeries, rats were fed either a diet enhanced with spirulina or a control diet. Immunohistochemistry was analyzed with unbiased stereological methods to quantify lesion size and microglial activation. As hypothesized, spirulina was neuroprotective in this α-synuclein model of PD as more TH+ and NeuN+ cells were observed; spirulina concomitantly decreased the numbers of activated microglial cells as determined by MHCII expression. This decrease in microglia activation may have been due, in part, to the effect of spirulina to increase expression of the fractalkine receptor (CX3CR1) on microglia. With this study we hypothesize that α-synuclein neurotoxicity is mediated, at least in part, via an interaction with microglia. We observed a decrease in activated microglia in the rats that received a spirulina- enhanced diet concomitant to neuroprotection. The increase in CX3CR1 in the groups that received spirulina, suggests a potential mechanism of action

    Oligodendrocytes Engineered with Migratory Proteins as Effective Graft Source for Cell Transplantation in Multiple Sclerosis

    No full text
    Multiple sclerosis (MS) is characterized by widespread immunomodulatory demyelination of the central nervous system (CNS), resulting in nerve cell dysfunction. Accordingly, treatment strategies have been centered on immunodulation and remyelination, with the former primarily focused on reducing the pathology rather than enhancing myelin repair, which the latter targets. While conceding to the emerging view of heterogeneity in the pathology of MS, which precludes variations in degree of immune response (i.e., inflammation) and demyelination, the concept of enhancing myelin repair is appealing since it is likely to provide both disease-reducing and disease-inhibiting therapeutic approaches to MS. In this regard, we and several others have proposed that cell replacement therapy is an effective strategy to repair the myelin in MS. Here we hypothesize that transplantation of mouse bone marrow-derived oligodendrocytes (BMDOs) and BMDOs transfected with ephrin proteins (BMDO + ephrin), which are known to enhance cell and axonal migratory capacity, may produce therapeutic benefits in animal models of MS

    Estrogen Replacement Therapy for Stroke

    No full text
    Stroke is the third most common cause of death and severe disability among Western populations. Overall, the incidence of stroke is uniformly higher in men than in women. Stroke is rare in women during the reproductive years and rapidly increases after menopause, strongly suggesting that estrogen (E2) plays an important role in the prevention of stroke. Ongoing studies are currently evaluating both the benefits and the risks associated with E2 replacement therapy and hormone replacement therapy in stroke. Equally important is the role of E2 receptor (ER), as studies indicate that ER populations in several tissue sites may significantly change during stress and aging. Such changes may affect the patient\u27s susceptibility to neurological disorders including stroke and greatly affect the response to selective E2 receptor modulators (SERMs). Replacement therapies may be inefficient with low ER levels. The goal of this review paper is to discuss an animal model that will allow investigations of the potential therapeutic effects of E2 and its derivatives in stroke. We hypothesize that E2 neuroprotection is, in part, receptor mediated. This hypothesis is a proof-of-principle approach to demonstrate a role for specific ER subtypes in E2 neuroprotection. To accomplish this, we use a retroviral-mediated gene transfer strategy that expresses subtypes of the ER gene in regions of the rat brain most susceptible to neuronal damage, namely, the striatum and the cortex. The animal model is exposed to experimental stroke conditions involving middle cerebral artery occlusion (MCAo) method, and eventually the extent of neuronal damage will be evaluated. A reduction in neuronal damage is expected when E2 is administered with specific ER subtypes. From this animal model, an optimal E2 dose and treatment regimen can be determined. The animal model can help identify potential E2-like therapeutics in stroke and screen for beneficial or toxic additives present in commercial E2 preparations that are currently available. Such studies will be informative in designing drug therapies for stroke

    Effect of AAV9-synuclein treatment on the LC.

    No full text
    <p>Quantification of TH immunohistochemistry in the locus coeruleus using unbiased stereological techniques. Graph shows that 4 months following α-synuclein gene transfer there is a significant loss of TH positive cells in the LC (2-way ANOVA did not show a significant interaction, but did reveal main effects of diet and treatment, and bonferonni post-hoc revealed a difference between the α-synuclein control and diet treated groups, p<0.01). Treatment with spirulina was able to prevent the loss of TH positive cells in the locus coeruleus. Asterisk denotes significance (**p<0.01 vs control GFP; *p<0.05 vs control α-synuclein).</p
    corecore