17 research outputs found

    Evacuation Simulation and Evaluation of Different Scenarios based on Traffic Grid Model and High Performance Computing

    Get PDF
    This paper describes the design and implementation of an evacuation simulation model developed based on the Traffic Grid Model in NetLogo. In this model, different scenarios were tested in order to find out the best strategy within specific environments. The model is flexible and includes many parameters to adjust to environment conditions and agent rules. These parameters can be modified to study which driving factors contribute most to drivers\u27 evacuation performance. This research also focuses on the method of results analysis and traffic performance evaluation for different combinations of two model parameters. In each experiment, we analysed metrics such as evacuation time and average car speed for each strategy under different population distribution patterns. The results showed that this model could reveal an effective evacuation strategy for realistic scenarios

    The B-Type Cyclin CYCB1-1 Regulates Embryonic Development and Seed Size in Maize

    No full text
    Progress through the cell cycle is a critical process during plant embryo and seed development and its progression is regulated by cyclins. Despite extensive study of cyclins in other systems, their role in embryo and seed development of maize is unclear. In this study, we demonstrate that ZmCYCB1-1 overexpression significantly accelerated embryo growth and increased seed size. In situ hybridization and toluidine blue staining indicated that ZmCYCB1-1 was highly expressed in the plumule of embryos, and the cells of the plumule were smaller, denser, and more regularly arranged in ZmCYCB1-1 overexpression plants. Overexpression of ZmCYCB1-1 in maize also resulted in an increased ear length and enhanced kernel weight by increasing kernel width. Transcriptome analysis indicated that the overexpression of ZmCYCB1-1 affected several different metabolic pathways, including photosynthesis in embryos and leaves, and lipid metabolism in leaves. Conversely, knocking out ZmCYCB1-1 resulted in plants with slow growth. Our results suggest that ZmCYCB1-1 regulates embryo growth and seed size, making it an ideal target for efforts aimed at maize yield improvement

    Co-expression analysis of tissue-specific DEGs and MAPKKK genes.

    No full text
    <p>The weight value obtained from the WGCNA package was used as a parameter for the parametric analysis of gene co-expression levels. A cutoff of 0.2 was used to select highly co-expressed genes in all three tissues. The left side of the heat map represents the Z-scores obtained from a parametric analysis of gene co-expression. The lower left bar represents the degrees of the Z-score scale. The right side of the heat map represents the expression patterns of the DEGs co-expressed with MAPKKKs that were enriched in the corresponding pathways on the left. The lower right bar represents the log2 of the drought/control ratio.</p

    Low‐voltage DC building distribution and utilization system and its implementation in China southern grid

    No full text
    Abstract The demand‐side DC electricity‐using equipment and newly integrated renewables are driving the transformation of power distribution and utilization mode. The building system based on DC technology is emerging as a promising option. In the low‐voltage DC building distribution and utilization system (LVDCBDUS), global energy optimization management and operational control arrangement are key components. To obtain exemplary achievements of those, two different DC building energy management system (DC BEMS) integration schemes are investigated according to the respective features and application‐required functions of various system networking structures. Centralized and decentralized control strategies are presented and discussed for buildings with AC–DC transformation and newly built LVDCBDUSs. On this basis, the centralized DC BEMS and operational control strategy are applied to the first multi‐scenario low‐carbon city‐based future building project—Shenzhen IBR Future Complex. The operation data are recorded and analysed. Problems encountered during the implementation are summarized, and requirements of converter equipment, new technologies and marketization are further discussed to promote the high‐quality development of the LVDCBDUS

    Graphene quantum dots against human IAPP aggregation and toxicity in vivo

    No full text
    The development of biocompatible nanomaterials has become a new frontier in the detection, treatment and prevention of human amyloid diseases. Here we demonstrated the use of graphene quantum dots (GQDs) as a potent inhibitor against the in vivo aggregation and toxicity of human islet amyloid polypeptide (IAPP), a hallmark of type 2 diabetes. GQDs initiated contact with IAPP through electrostatic and hydrophobic interactions as well as hydrogen bonding, which subsequently drove the peptide fibrillization off-pathway to eliminate the toxic intermediates. Such interactions, probed in vitro by a thioflavin T kinetic assay, fluorescence quenching, circular dichroism spectroscopy, a cell viability assay and in silico by discrete molecular dynamics simulations, translated to a significant recovery of embryonic zebrafish from the damage elicited by IAPP in vivo, as indicated by improved hatching as well as alleviated reactive oxygen species production, abnormality and mortality of the organism. This study points to the potential of using zero-dimensional nanomaterials for in vivo mitigation of a range of amyloidosis

    Pathway enrichment of differentially expressed genes involved in different regulatory processes under drought stress.

    No full text
    <p>A q-value cutoff of 0.05 was used to select enriched gene sets in all three tissues. The heat map represents the Z-scores obtained from a parametric analysis of gene set enrichment q-values for term enrichment. Red represents enriched genes in the treatment group that were over-represented compared with the control set. Blue represents the enriched genes in the treatment group that were under-represented compared with the control set. The absolute values represent the enrichment level. The bar represents the Z-score region from -3 to 3.</p
    corecore