47 research outputs found

    Mammographic image classification with deep fusion learning

    Get PDF

    Community health education improves child health care in Rural Western China.

    Get PDF
    BACKGROUND Rural infant growth failure has been highlighted as a priority for action in China's national nutrition and child development policies. The aim of this paper was to evaluate the effect of community-based intervention project on child feeding, child health care and child growth. METHODS From 2001 to 2005, UNICEF and China's Ministry of Health worked together to develop holistic strategies for child health care. All the interventions were implemented through the three-tier (county-township-village) rural health care network.In this study, 34 counties were included in both surveys in 2001 and 2005. Among these 34 counties, nine were subjected to the intervention and 25 counties were used as controls. In nine intervention counties, leaflets containing information of supplemental feeding of infants and young children were printed and distributed to women during hospital delivery or visit to newborn by village doctors. Two cross-sectional surveys were both conducted from July to early September in 2001 and 2005. We calculated Z-scores of height-for-age (HAZ), weight-for-age (WAZ) and weight-for-height (WHZ), with the new WHO growth standard. HAZ < - 2 was defined as stunting, WAZ < - 2 was defined as underweight, and WHZ < - 2 was defined as wasting. RESULTS Following the four-year study period, the parents in the intervention group showed significantly better infant and young child feeding practices and behaviors of child care than did their control group counterparts. In addition, all three anthropometric indicators in 2005 in the intervention group were better than in the control, with stunting 4.9% lower (p < 0.001), underweight 2.2% lower (p < 0.001), and wasting 1.0% lower (p < 0.05). CONCLUSIONS We concluded that the health care education intervention embed in government had the potential to be successfully promoted in rural western China

    Performance Simulation of Solar Trough Concentrators: Optical and Thermal Comparisons

    No full text
    The solar trough concentrator is used to increase the solar radiation intensity on absorbers for water heating, desalination, or power generation purposes. In this study, optical performances of four solar trough concentrators, viz. the parabolic trough concentrator (PTC), the compound parabolic concentrator (CPC), the surface uniform concentrator (SUC), and the trapezoid trough concentrator (TTC), are simulated using the Monte Carlo Ray Tracing method. Mathematical models for the solar trough concentrators are first established. The solar radiation distributions on their receivers are then simulated. The solar water heating performances using the solar trough concentrators are finally compared. The results show that, as a high-concentration ratio concentrator, the PTC can achieve the highest heat flux, but suffers from the worst uniformity on the absorber, which is only 0.32%. The CPC can generate the highest heat flux among the rest three low-concentration ratio solar trough concentrators. Compared with the PTC and the CPC, the TTC has better uniformity, but its light-receiving ratio is only 70%. The SUC is beneficial for its highest uniformity of 87.38%. Thermal analysis results show that the water temperatures inside the solar trough concentrators are directly proportional to their wall temperature, with the highest temperature rise in the PTC and the smallest temperature rise in the TTC. The solar trough concentrators’ thermal deformations are positively correlated to their wall temperatures. The radial deformation of the SUC is much larger than those of other solar trough concentrators. The smallest equivalent stress is found in the SUC, which is beneficial to the long-term operation of the solar water heating system

    Bioinformatics Analysis and Structure of Gastric Cancer Prognosis Model Based on Lipid Metabolism and Immune Microenvironment

    No full text
    Objectives: The reprogramming of lipid metabolism is a new trait of cancers. However, the role of lipid metabolism in the tumor immune microenvironment (TIME) and the prognosis of gastric cancer remains unclear. Methods: Consensus clustering was applied to identify novel subgroups. ESTIMATE, TIMER, and MCPcounter algorithms were used to determine the TIME of the subgroups. The underlying mechanisms were elucidated using functional analysis. The prognostic model was established using the LASSO algorithm and multivariate Cox regression analysis. Results: Three molecular subgroups with significantly different survival were identified. The subgroup with relatively low lipid metabolic expression had a lower immune score and immune cells. The differentially expressed genes (DEGs) were concentrated in immune biological processes and cell migration via GO and KEGG analyses. GSEA analysis showed that the subgroups were mainly enriched in arachidonic acid metabolism. Gastric cancer survival can be predicted using risk models based on lipid metabolism genes. Conclusions: The TIME of gastric cancer patients is related to the expression of lipid metabolism genes and could be used to predict cancer prognosis accurately

    Overexpression of alfalfa γ-tocopherol methyltransferase (γ-TMT) gene increases salt susceptibility of transgenic Arabidopsis in seed germination

    No full text
    As antioxidants, tocopherols deactivate reactive oxygen species and prevent lipids from oxidation in response to abiotic stresses. γ-Tocopherol methyltransferase (γ-TMT) catalyzes the conversion of γ-tocopherol into α-tocopherol which has the highest biological activity. To investigate roles of γ-TMT in seed germination under salinity stress, we heterologously overexpressed an alfalfa MsTMT gene in Arabidopsis. MsTMT transgenic seeds germinated much slower than that of Arabidopsis wild-type (WT) seeds under salt stress or exogenous abscisic acid (ABA) treatment, indicating enhanced osmotic and ABA sensitivity in transgenic seeds. Under salinity stress, expression levels of ABA biosynthesis genes (NCED4 and NCED9) and signaling genes (ABI3 and ABI5) were increased in transgenic seeds. Meanwhile, the expression of GA biosynthesis genes (GA3OX1 and GA3OX2) were repressed and that of GA signal suppressor genes RGL2 was enhanced. Moreover, overexpression of MsTMT promoted the release of seemucilage and contributed to the redistribution of pectins. Interestingly, removal of seed mucilage eliminated the difference in the initiation of seed germination between WT and transgenic lines. Taken together, MsTMT had a strong influence on the response to salinity stress in transgenic Arabidopsis during seed germination. Our results reveal a novel role of MsTMT in mediating the regulations of ABA and GA signaling in seed germination, which is also associated with mucilage release and structure. This study provides new insights into the regulatory network controlled by tocopherol biosynthesis gene in response to abiotic stress in plants.This work was supported by the grant from the Earmarked Fund for China Agriculture Research System (CARS-34), National Nature Science Foundation of China (31872410), and the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (ASTIP-IAS10)

    Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation

    No full text
    This work systematically studied the kinetics and mechanism of degradation of salicylhydroxamic acid (SHA), benzhydroxamic acid (BHA) and N-hydroxyphthalimide (NOP) by UVA-B/H2O2 and UVA-B/peroxodisulfate (PDS). UVA-B irradiation could induce a direct photolysis of SHA and dominated SHA destruction in both systems. BHA and NOP were effectively degraded via HO•- and SO4•−-mediated oxidation. UVA-B/PDS displayed a better degradation performance for HAAs investigated than UVA-B/H2O2. An acidic pH was more suitable for three HAAs removal in the UVA-B/H2O2 system. However, basic pH was more efficient for HAAs degradation in the UVA-B/PDS system. The degradation of BHA and NOP was predominantly driven by SO4•− at all pH levels used (5.0–9.0). The second-order rate constants for SHA, BHA and NOP reactions with HO• and SO4•− were calculated to be (4.16–5.22) × 109 M−1•s−1 and (1.19–7.22) × 109 M−1•s−1, respectively. Presence of various water constituents had different influence on HAA removal, with a enhancement in the presence of HCO3–, Fe2+ and Cu2+. When real waters were used as a background, dissolved organic carbon and Cl− were the main factors that consumed radicals and affected the degradation performance of HAAs. Analysis of the transformation products and density functional theory revealed that all of the investigated HAAs first generated amidated products but the formation mechanisms might have been different. HAAs degradation pathways mainly included hydrolysis, hydroxylation, decarboxylation and ring opening processes. Toxicity evaluation showed that the UV/AOP degradation of HAAs generated some transformation products with higher acute toxicity than the parent compounds

    Integrated physiological and metabolomic analyses reveal changes during the natural senescence of Quercus mongolica leaves.

    No full text
    Quercus mongolica is a common landscape, afforestation, and construction timber species in northern China with high ecological, economic, and ornamental value. Leaf senescence is a complex process that has important implications for plant growth and development. To explore changes of metabolites during the ageing of Quercus mongolica leaves, we investigated physiological responses and metabolite composition in ageing leaves harvested from 15-20-year-old Quercus mongolica. Leaf samples of Q. mongolica were collected when they were still green (at maturity) (stage 1), during early senescence (stage 2), and during late senescence (stage 3). These leaves were then subjected to physiological index and metabolome sequencing analyses. The physiological analysis showed that the leaves of Q. mongolica changed from green to yellow during senescence, which induced significant accumulation of soluble sugar and significant reductions in the concentration of soluble protein and chlorophyll. Peroxidase and catalase were the main antioxidant enzymes mitigating leaf senescence. Metabolomic analysis identified 797 metabolites during leaf senescence. Compared to stage 1, 70 differential metabolites were screened in stage 2 and 72 were screened in stage 3. Differential metabolites in the two senescent stages were principally enriched in amino acid metabolism, lipid metabolism and secondary metabolite biosynthesis. The contents of N-oleoylethanolamine and N, N-dimethylglycine were significantly increased only in stage 2, while the contents of trifolin, astragalin, valine, isoleucine, leucine, and citric acid were significantly increased only in stage 3. Histidine, homoserine, tryptophan, tyrosine, phenylalanine, proline, norleucine, N-glycyl-L-leucine, linoleic acid, linolenic acid, gallic acid, 3-indoleacrylic acid, 3-amino-2-naphthoic acid, 3-hydroxy-3-methylpentane-1,5-dioic acid, 2,3,4-trihydroxybenzoic acid, trifolin, astragalin, DL-2-aminoadipic acid, pinoresinol dimethyl ether, dimethylmatairesinol, and lysophosphatidylcholine increased during both stage 2 and stage 3. Increasing contents of these metabolites may constitute the main mechanism by which Q. mongolica leaves adapt to senescence

    Synergy between fayalite-constituted waste copper smelting slag and hydroxylamine: An efficient combination for construction and application of a surface Fenton system in removal of mining organic pollutants

    No full text
    The growing problem of typical organic pollution in mines, and the effective utilization of increasing mine industrial wastes have been the most challenging issues in the current global situation. In this study, copper smelting slag (CSS), hydroxylamine (HA) and H2O2 were employed to construct an efficient surface heterogeneous catalyst for the degradation of organic pollutants in mines. Fayalite and its ≡Fe were proved, by multiple methods, to be the crucial ferriferous catalyst in the CSS. HA greatly increased the oxidation effectiveness of the CSS from 53.6% to ~100% by regulating the Fe2+/Fe3+ circulation within the fayalite lattice. Due to the special structural configuration of iron atoms in fayalite, the surface generation rate of •OH catalyzed by CSS was 101-106 times higher than in other iron-bearing minerals. •OH was demonstrated to be the main active radical species, and as an intermediate, O2•- also had a role in the oxidation process. In the presence of low doses of Cr, a synergistic removal of organic pollutants occurred, dominated by the electron transfer. Accordingly, this study proposes both, a new design concept for recycling the industrial solid waste from mines and a new surface catalyst system for the removal of organic pollutants from mining
    corecore