6,717 research outputs found

    A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons

    Get PDF
    In this paper, we present a comprehensive review of the data sources and estimation methods of 30 currently available global precipitation data sets, including gauge-based, satellite-related, and reanalysis data sets. We analyzed the discrepancies between the data sets from daily to annual timescales and found large differences in both the magnitude and the variability of precipitation estimates. The magnitude of annual precipitation estimates over global land deviated by as much as 300 mm/yr among the products. Reanalysis data sets had a larger degree of variability than the other types of data sets. The degree of variability in precipitation estimates also varied by region. Large differences in annual and seasonal estimates were found in tropical oceans, complex mountain areas, northern Africa, and some high-latitude regions. Overall, the variability associated with extreme precipitation estimates was slightly greater at lower latitudes than at higher latitudes. The reliability of precipitation data sets is mainly limited by the number and spatial coverage of surface stations, the satellite algorithms, and the data assimilation models. The inconsistencies described limit the capability of the products for climate monitoring, attribution, and model validation

    Fast Predictive Image Registration

    Full text link
    We present a method to predict image deformations based on patch-wise image appearance. Specifically, we design a patch-based deep encoder-decoder network which learns the pixel/voxel-wise mapping between image appearance and registration parameters. Our approach can predict general deformation parameterizations, however, we focus on the large deformation diffeomorphic metric mapping (LDDMM) registration model. By predicting the LDDMM momentum-parameterization we retain the desirable theoretical properties of LDDMM, while reducing computation time by orders of magnitude: combined with patch pruning, we achieve a 1500x/66x speed up compared to GPU-based optimization for 2D/3D image registration. Our approach has better prediction accuracy than predicting deformation or velocity fields and results in diffeomorphic transformations. Additionally, we create a Bayesian probabilistic version of our network, which allows evaluation of deformation field uncertainty through Monte Carlo sampling using dropout at test time. We show that deformation uncertainty highlights areas of ambiguous deformations. We test our method on the OASIS brain image dataset in 2D and 3D

    Local stabilisation of polar order at charged antiphase boundaries in antiferroelectric (Bi<sub>0.85</sub>Nd<sub>0.15</sub>)(Ti<sub>0.1</sub>Fe<sub>0.9</sub>)O<sub>3</sub>

    Get PDF
    Observation of an unusual, negatively-charged antiphase boundary in (Bi&lt;sub&gt;0.85&lt;/sub&gt;Nd&lt;sub&gt;0.15&lt;/sub&gt;)(Ti&lt;sub&gt;0.1&lt;/sub&gt;Fe&lt;sub&gt;0.9&lt;/sub&gt;)O&lt;sub&gt;3&lt;/sub&gt; is reported. Aberration corrected scanning transmission electron microscopy is used to establish the full three dimensional structure of this boundary including O-ion positions to ~ ± 10 pm. The charged antiphase boundary stabilises tetragonally distorted regions with a strong polar ordering to either side of the boundary, with a characteristic length scale determined by the excess charge trapped at the boundary. Far away from the boundary the crystal relaxes into the well-known Nd-stabilised antiferroelectric phase

    Some Low Dimensional Evidence for the Weak Gravity Conjecture

    Full text link
    We discuss a few examples in 2+1 dimensions and 1+1 dimensions supporting a recent conjecture concerning the relation between the Planck scale and the coupling strength of a non-gravitional interaction, unlike those examples in 3+1 dimensions, we do not have to resort to exotic physics such as small black holes. However, the result concerning these low dimensional examples is a direct consequence of the 3+1 dimensional conjecture.Comment: 7 pages, harvma

    Some estimates of Wang-Yau quasilocal energy

    Full text link
    Given a spacelike 2-surface Σ\Sigma in a spacetime NN and a constant future timelike unit vector T0T_0 in R3,1\R^{3,1}, we derive upper and lower estimates of Wang-Yau quasilocal energy E(Σ,X,T0)E(\Sigma, X, T_0) for a given isometric embedding XX of Σ\Sigma into a flat 3-slice in R3,1\R^{3,1}. The quantity E(Σ,X,T0) E(\Sigma, X, T_0) itself depends on the choice of XX, however the infimum of E(Σ,X,T0) E(\Sigma, X, T_0) over T0 T_0 does not. In particular, when Σ\Sigma lies in a time symmetric 3-slice in NN and has nonnegative Brown-York quasilocal mass \mby(\Sigma), our estimates show that infT0E(Σ,X,T0)\inf\limits_{T_0}E(\Sigma, X, T_0) equals \mby (\Sigma). We also study the spatial limit of infT0E(Sr,Xr,T0) \inf\limits_{T_0}E(S_r,X_r,T_0), where SrS_r is a large coordinate sphere in a fixed end of an asymptotically flat initial data set (M,g,p)(M, g, p) and XrX_r is an isometric embeddings of SrS_r into R3R3,1\mathbb{R}^3 \subset \mathbb{R}^{3,1}. We show that if (M,g,p)(M, g, p) has future timelike ADM energy-momentum, then limrinfT0E(Sr,Xr,T0)\lim\limits_{r\to\infty}\inf\limits_{T_0}E(S_r,X_r,T_0) equals the ADM mass of (M,g,p)(M, g, p).Comment: 17 page
    corecore