21,545 research outputs found

    A Possible Hermitian Neutrino Mixing Ansatz

    Get PDF
    Using a recent global analysis result after the precise measurement of θ13\theta_ {13}, a possible Herimtian neutrino mixing ansatz is discussed, the mixing matrix is symmetric and also symmetric with respect with the second diagonal line in the leading order. This leading order ansatz predicts θ13=12.2\theta_{13}=12.2^\circ. Next, consider the hierarchy structure of the lepton mass matrix as the origin of perturbation of the mixing matrix, we find that this ansatz with perturbation can fit current data very well.Comment: 13 pages, 4 figure

    Holographic R\'enyi Entropy and Generalized Entropy method

    Get PDF
    In this paper we use the method of generalized gravitational entropy in \cite{Lewkowycz:2013nqa} to construct the dual bulk geometry for a spherical entangling surface, and calculate the R\'enyi entropy with the dual bulk gravity theory being either Einstein gravity or Lovelock gravity, this approach is closely related to that in \cite{Casini:2011kv}. For a general entangling surface we derive the area law of entanglement entropy. The area law is closely related with the local property of the entangling surface.Comment: 17+6 page

    Entropy for gravitational Chern-Simons terms by squashed cone method

    Get PDF
    In this paper we investigate the entropy of gravitational Chern-Simons terms for the horizon with non-vanishing extrinsic curvatures, or the holographic entanglement entropy for arbitrary entangling surface. In 3D we find no anomaly of entropy appears. But the squashed cone method can not be used directly to get the correct result. For higher dimensions the anomaly of entropy would appear, still, we can not use the squashed cone method directly. That is becasuse the Chern-Simons action is not gauge invariant. To get a reasonable result we suggest two methods. One is by adding a boundary term to recover the gauge invariance. This boundary term can be derived from the variation of the Chern-Simons action. The other one is by using the Chern-Simons relation dΩ4n1=tr(R2n)d\bm{\Omega_{4n-1}}=tr(\bm{R}^{2n}). We notice that the entropy of tr(R2n)tr(\bm{R}^{2n}) is a total derivative locally, i.e. S=dsCSS=d s_{CS}. We propose to identify sCSs_{CS} with the entropy of gravitational Chern-Simons terms Ω4n1\Omega_{4n-1}. In the first method we could get the correct result for Wald entropy in arbitrary dimension. In the second approach, in addition to Wald entropy, we can also obtain the anomaly of entropy with non-zero extrinsic curvatures. Our results imply that the entropy of a topological invariant, such as the Pontryagin term tr(R2n)tr(\bm{R}^{2n}) and the Euler density, is a topological invariant on the entangling surface.Comment: 19 pag

    Estimation of constant and time-varying dynamic parameters of HIV infection in a nonlinear differential equation model

    Full text link
    Modeling viral dynamics in HIV/AIDS studies has resulted in a deep understanding of pathogenesis of HIV infection from which novel antiviral treatment guidance and strategies have been derived. Viral dynamics models based on nonlinear differential equations have been proposed and well developed over the past few decades. However, it is quite challenging to use experimental or clinical data to estimate the unknown parameters (both constant and time-varying parameters) in complex nonlinear differential equation models. Therefore, investigators usually fix some parameter values, from the literature or by experience, to obtain only parameter estimates of interest from clinical or experimental data. However, when such prior information is not available, it is desirable to determine all the parameter estimates from data. In this paper we intend to combine the newly developed approaches, a multi-stage smoothing-based (MSSB) method and the spline-enhanced nonlinear least squares (SNLS) approach, to estimate all HIV viral dynamic parameters in a nonlinear differential equation model. In particular, to the best of our knowledge, this is the first attempt to propose a comparatively thorough procedure, accounting for both efficiency and accuracy, to rigorously estimate all key kinetic parameters in a nonlinear differential equation model of HIV dynamics from clinical data. These parameters include the proliferation rate and death rate of uninfected HIV-targeted cells, the average number of virions produced by an infected cell, and the infection rate which is related to the antiviral treatment effect and is time-varying. To validate the estimation methods, we verified the identifiability of the HIV viral dynamic model and performed simulation studies.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS290 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Thermodynamics of the Schwarzschild-AdS black hole with a minimal length

    Get PDF
    Using the mass-smeared scheme of black holes, we study the thermodynamics of black holes. Two interesting models are considered. One is the self-regular Schwarzschild-AdS black hole whose mass density is given by the analogue to probability densities of quantum hydrogen atoms. The other model is the same black hole but whose mass density is chosen to be a rational fractional function of radial coordinates. Both mass densities are in fact analytic expressions of the δ{\delta}-function. We analyze the phase structures of the two models by investigating the heat capacity at constant pressure and the Gibbs free energy in an isothermal-isobaric ensemble. Both models fail to decay into the pure thermal radiation even with the positive Gibbs free energy due to the existence of a minimal length. Furthermore, we extend our analysis to a general mass-smeared form that is also associated with the δ{\delta}-function, and indicate the similar thermodynamic properties for various possible mass-smeared forms based on the δ{\delta}-function.Comment: v1: 25 pages, 14 figures; v2: 26 pages, 15 figures; v3: minor revisions, final version to appear in Adv. High Energy Phy

    Holographic Entanglement Entropy for the Most General Higher Derivative Gravity

    Get PDF
    The holographic entanglement entropy for the most general higher derivative gravity is investigated. We find a new type of Wald entropy, which appears on entangling surface without the rotational symmetry and reduces to usual Wald entropy on Killing horizon. Furthermore, we obtain a formal formula of HEE for the most general higher derivative gravity and work it out exactly for some squashed cones. As an important application, we derive HEE for gravitational action with one derivative of the curvature when the extrinsic curvature vanishes. We also study some toy models with non-zero extrinsic curvature. We prove that our formula yields the correct universal term of entanglement entropy for 4d CFTs. Furthermore, we solve the puzzle raised by Hung, Myers and Smolkin that the logarithmic term of entanglement entropy derived from Weyl anomaly of CFTs does not match the holographic result even if the extrinsic curvature vanishes. We find that such mismatch comes from the `anomaly of entropy' of the derivative of curvature. After considering such contributions carefully, we resolve the puzzle successfully. In general, we need to fix the splitting problem for the conical metrics in order to derive the holographic entanglement entropy. We find that, at least for Einstein gravity, the splitting problem can be fixed by using equations of motion. How to derive the splittings for higher derivative gravity is a non-trivial and open question. For simplicity, we ignore the splitting problem in this paper and find that it does not affect our main results.Comment: 28 pages, no figures, published in JHE

    Dynamics for the focusing, energy-critical nonlinear Hartree equation

    Full text link
    In \cite{LiMZ:e-critical Har, MiaoXZ:09:e-critical radial Har}, the dynamics of the solutions for the focusing energy-critical Hartree equation have been classified when E(u0)<E(W)E(u_0)<E(W), where WW is the ground state. In this paper, we continue the study on the dynamics of the radial solutions with the threshold energy. Our arguments closely follow those in \cite{DuyMerle:NLS:ThresholdSolution, DuyMerle:NLW:ThresholdSolution, DuyRouden:NLS:ThresholdSolution, LiZh:NLS, LiZh:NLW}. The new ingredient is that we show that the positive solution of the nonlocal elliptic equation in L2dd2(Rd)L^{\frac{2d}{d-2}}(\R^d) is regular and unique by the moving plane method in its global form, which plays an important role in the spectral theory of the linearized operator and the dynamics behavior of the threshold solution.Comment: 53 page

    Sieve estimation of constant and time-varying coefficients in nonlinear ordinary differential equation models by considering both numerical error and measurement error

    Full text link
    This article considers estimation of constant and time-varying coefficients in nonlinear ordinary differential equation (ODE) models where analytic closed-form solutions are not available. The numerical solution-based nonlinear least squares (NLS) estimator is investigated in this study. A numerical algorithm such as the Runge--Kutta method is used to approximate the ODE solution. The asymptotic properties are established for the proposed estimators considering both numerical error and measurement error. The B-spline is used to approximate the time-varying coefficients, and the corresponding asymptotic theories in this case are investigated under the framework of the sieve approach. Our results show that if the maximum step size of the pp-order numerical algorithm goes to zero at a rate faster than n1/(p4)n^{-1/(p\wedge4)}, the numerical error is negligible compared to the measurement error. This result provides a theoretical guidance in selection of the step size for numerical evaluations of ODEs. Moreover, we have shown that the numerical solution-based NLS estimator and the sieve NLS estimator are strongly consistent. The sieve estimator of constant parameters is asymptotically normal with the same asymptotic co-variance as that of the case where the true ODE solution is exactly known, while the estimator of the time-varying parameter has the optimal convergence rate under some regularity conditions. The theoretical results are also developed for the case when the step size of the ODE numerical solver does not go to zero fast enough or the numerical error is comparable to the measurement error. We illustrate our approach with both simulation studies and clinical data on HIV viral dynamics.Comment: Published in at http://dx.doi.org/10.1214/09-AOS784 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore