5,773 research outputs found

    Identifiability of Normal and Normal Mixture Models With Nonignorable Missing Data

    Full text link
    Missing data problems arise in many applied research studies. They may jeopardize statistical inference of the model of interest, if the missing mechanism is nonignorable, that is, the missing mechanism depends on the missing values themselves even conditional on the observed data. With a nonignorable missing mechanism, the model of interest is often not identifiable without imposing further assumptions. We find that even if the missing mechanism has a known parametric form, the model is not identifiable without specifying a parametric outcome distribution. Although it is fundamental for valid statistical inference, identifiability under nonignorable missing mechanisms is not established for many commonly-used models. In this paper, we first demonstrate identifiability of the normal distribution under monotone missing mechanisms. We then extend it to the normal mixture and tt mixture models with non-monotone missing mechanisms. We discover that models under the Logistic missing mechanism are less identifiable than those under the Probit missing mechanism. We give necessary and sufficient conditions for identifiability of models under the Logistic missing mechanism, which sometimes can be checked in real data analysis. We illustrate our methods using a series of simulations, and apply them to a real-life dataset

    Your Room is not Private: Gradient Inversion Attack on Reinforcement Learning

    Full text link
    The prominence of embodied Artificial Intelligence (AI), which empowers robots to navigate, perceive, and engage within virtual environments, has attracted significant attention, owing to the remarkable advancements in computer vision and large language models. Privacy emerges as a pivotal concern within the realm of embodied AI, as the robot accesses substantial personal information. However, the issue of privacy leakage in embodied AI tasks, particularly in relation to reinforcement learning algorithms, has not received adequate consideration in research. This paper aims to address this gap by proposing an attack on the value-based algorithm and the gradient-based algorithm, utilizing gradient inversion to reconstruct states, actions, and supervision signals. The choice of using gradients for the attack is motivated by the fact that commonly employed federated learning techniques solely utilize gradients computed based on private user data to optimize models, without storing or transmitting the data to public servers. Nevertheless, these gradients contain sufficient information to potentially expose private data. To validate our approach, we conduct experiments on the AI2THOR simulator and evaluate our algorithm on active perception, a prevalent task in embodied AI. The experimental results demonstrate the effectiveness of our method in successfully reconstructing all information from the data across 120 room layouts.Comment: 7 pages, 4 figures, 2 table

    Long-term Blood Pressure Prediction with Deep Recurrent Neural Networks

    Full text link
    Existing methods for arterial blood pressure (BP) estimation directly map the input physiological signals to output BP values without explicitly modeling the underlying temporal dependencies in BP dynamics. As a result, these models suffer from accuracy decay over a long time and thus require frequent calibration. In this work, we address this issue by formulating BP estimation as a sequence prediction problem in which both the input and target are temporal sequences. We propose a novel deep recurrent neural network (RNN) consisting of multilayered Long Short-Term Memory (LSTM) networks, which are incorporated with (1) a bidirectional structure to access larger-scale context information of input sequence, and (2) residual connections to allow gradients in deep RNN to propagate more effectively. The proposed deep RNN model was tested on a static BP dataset, and it achieved root mean square error (RMSE) of 3.90 and 2.66 mmHg for systolic BP (SBP) and diastolic BP (DBP) prediction respectively, surpassing the accuracy of traditional BP prediction models. On a multi-day BP dataset, the deep RNN achieved RMSE of 3.84, 5.25, 5.80 and 5.81 mmHg for the 1st day, 2nd day, 4th day and 6th month after the 1st day SBP prediction, and 1.80, 4.78, 5.0, 5.21 mmHg for corresponding DBP prediction, respectively, which outperforms all previous models with notable improvement. The experimental results suggest that modeling the temporal dependencies in BP dynamics significantly improves the long-term BP prediction accuracy.Comment: To appear in IEEE BHI 201

    Research of Coordinated Control Strategy for Multi-UHVDC in AC/DC Hybrid Power Grid

    Get PDF
    AbstractThe control strategy and modulation scheme of DC system have great effect on transient stability and dynamical stability in AC/DC hybrid power grid. In order to decrease the effect of UHVDC blocks and AC lines faults, a coordinated control strategy of emergency power modulation and small signal modulation is put forward by making use of the fast controllability and the overload capability of HVDC system. Simulation results show that the coordinated control strategy may decrease power loss and improve the dynamical stability of the AC/DC hybrid system

    Full-range Gate-controlled Terahertz Phase Modulations with Graphene Metasurfaces

    Full text link
    Local phase control of electromagnetic wave, the basis of a diverse set of applications such as hologram imaging, polarization and wave-front manipulation, is of fundamental importance in photonic research. However, the bulky, passive phase modulators currently available remain a hurdle for photonic integration. Here we demonstrate full-range active phase modulations in the Tera-Hertz (THz) regime, realized by gate-tuned ultra-thin reflective metasurfaces based on graphene. A one-port resonator model, backed by our full-wave simulations, reveals the underlying mechanism of our extreme phase modulations, and points to general strategies for the design of tunable photonic devices. As a particular example, we demonstrate a gate-tunable THz polarization modulator based on our graphene metasurface. Our findings pave the road towards exciting photonic applications based on active phase manipulations
    • …
    corecore