2 research outputs found

    Precursors and Pathways Leading to Enhanced Secondary Organic Aerosol Formation during Severe Haze Episodes

    Get PDF
    Publisher Copyright: © 2021 American Chemical SocietyMolecular analyses help to investigate the key precursors and chemical processes of secondary organic aerosol (SOA) formation. We obtained the sources and molecular compositions of organic aerosol in PM2.5in winter in Beijing by online and offline mass spectrometer measurements. Photochemical and aqueous processing were both involved in producing SOA during the haze events. Aromatics, isoprene, long-chain alkanes or alkenes, and carbonyls such as glyoxal and methylglyoxal were all important precursors. The enhanced SOA formation during the severe haze event was predominantly contributed by aqueous processing that was promoted by elevated amounts of aerosol water for which multifunctional organic nitrates contributed the most followed by organic compounds having four oxygen atoms in their formulae. The latter included dicarboxylic acids and various oxidation products from isoprene and aromatics as well as products or oligomers from methylglyoxal aqueous uptake. Nitrated phenols, organosulfates, and methanesulfonic acid were also important SOA products but their contributions to the elevated SOA mass during the severe haze event were minor. Our results highlight the importance of reducing nitrogen oxides and nitrate for future SOA control. Additionally, the formation of highly oxygenated long-chain molecules with a low degree of unsaturation in polluted urban environments requires further research.Peer reviewe

    Secondary Organic Aerosol Formation of Fleet Vehicle Emissions in China: Potential Seasonality of Spatial Distributions

    No full text
    Vehicle emissions are an important source of urban particular matter. To investigate the secondary organic aerosol (SOA) formation potential of real-world vehicle emissions, we exposed on-road air in Beijing to hydroxyl radicals generated in an oxidation flow reactor (OFR) under high-NOx conditions on-board a mobile laboratory and characterized SOA and their precursors with a suite of state-of-the-art instrumentation. The OFR produced 10-170 mu g m(-3) of SOA with a maximum SOA formation potential of 39-50 mu g m(-3) ppmv(-1) CO that occurred following an integrated OH exposure of (1.3-2.0) x 10(11) molecules cm(-3) s. The results indicate relatively shorter photochemical ages for maximum SOA production than previous OFR results obtained under low-NOx conditions. Such timescales represent the balance of functionalization and fragmentation, possibly resulting in different spatial distributions of SOA in different seasons as the oxidant level changes. The detected precursors may explain as much as 13% of the observed SOA with the remaining plausibly contributed by the oxidation of undetected intermediate-volatility organic compounds. Extrapolation of the results suggests an annual SOA production rate of 0.78 Tg yr(-1) from mobile gasoline sources in China, highlighting the importance of effective regulation of gaseous vehicular precursors to improve air quality in the future
    corecore