18,973 research outputs found
Study of the Aerosol Indirect Effect by Large-Eddy Simulation of Marine Stratocumulus
A total of 98 three-dimensional large-eddy simulations (LESs) of marine stratocumulus clouds covering both nighttime and daytime conditions were performed to explore the response of cloud optical depth (τ) to various aerosol number concentrations (Na = 50–2500 cm−3) and the covarying meteorological conditions (large-scale divergence rate and SST). The idealized First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) and the Atlantic Stratocumulus Transition Experiment (ASTEX) Lagrangian 1 sounding profiles were used to represent the lightly and heavily drizzling cases, respectively. The first and second aerosol indirect effects are identified. Through statistical analysis, τ is found be to both positively correlated with Na and cloud liquid water path (LWP) with a higher correlation associated with LWP, which is predominantly regulated by large-scale subsidence and SST. Clouds with high LWP occur under low SST or weak large-scale subsidence. Introduction of a small amount of giant sea salt aerosol into the simulation lowers the number of cloud droplets activated, results in larger cloud droplets, and initiates precipitation for nondrizzling polluted clouds or precedes the precipitation process for drizzling clouds. However, giant sea salt aerosol is found to have a negligible effect on τ for lightly precipitating cases, while resulting in a relative reduction of τ of 3%–77% (increasing with Na, for Na = 1000–2500 cm−3) for heavily precipitating cases, suggesting that the impact of giant sea salt is only important for moist and potentially convective clouds. Finally, a regression analysis of the simulations shows that the second indirect effect is more evident in clear than polluted cases. The second indirect effect is found to enhance (reduce) the overall aerosol indirect effect for heavily (lightly) drizzling clouds; that is, τ is larger (smaller) for the same relative change in Na than considering the Twomey (first indirect) effect alone. The aerosol indirect effect (on τ) is lessened in the daytime afternoon conditions and is dominated by the Twomey effect; however, the effect in the early morning is close but slightly smaller than that in the nocturnal run. Diurnal variations of the aerosol indirect effect should be considered to accurately assess its magnitude
Hadronization Approach for a Quark-Gluon Plasma Formed in Relativistic Heavy Ion Collisions
A transport model is developed to describe hadron emission from a strongly
coupled quark-gluon plasma formed in relativistic heavy ion collisions. The
quark-gluon plasma is controlled by ideal hydrodynamics, and the hadron motion
is characterized by a transport equation with loss and gain terms. The two sets
of equations are coupled to each other, and the hadronization hypersurface is
determined by both the hydrodynamic evolution and the hadron emission. The
model is applied to calculate the transverse momentum distributions of mesons
and baryons, and most of the results agree well with the experimental data at
RHIC.Comment: 16 pages, 24 figures. Version accepted by PR
Rotor aeroelastic stability coupled with helicopter body motion
A 5.5-foot-diameter, soft-in-plane, hingeless-rotor system was tested on a gimbal which allowed the helicopter rigid-body pitch and roll motions. Coupled rotor/airframe aeroelastic stability boundaries were explored and the modal damping ratios were measured. The time histories were correlated with analysis with excellent agreement. The effects of forward speed and some rotor design parameters on the coupled rotor/airframe stability were explored both by model and analysis. Some physical insights into the coupled stability phenomenon are suggested
A Remark on Boundary Effects in Static Vacuum Initial Data sets
Let (M, g) be an asymptotically flat static vacuum initial data set with
non-empty compact boundary. We prove that (M, g) is isometric to a spacelike
slice of a Schwarzschild spacetime under the mere assumption that the boundary
of (M, g) has zero mean curvature, hence generalizing a classic result of
Bunting and Masood-ul-Alam. In the case that the boundary has constant positive
mean curvature and satisfies a stability condition, we derive an upper bound of
the ADM mass of (M, g) in terms of the area and mean curvature of the boundary.
Our discussion is motivated by Bartnik's quasi-local mass definition.Comment: 10 pages, to be published in Classical and Quantum Gravit
Critical points of Wang-Yau quasi-local energy
In this paper, we prove the following theorem regarding the Wang-Yau
quasi-local energy of a spacelike two-surface in a spacetime: Let be a
boundary component of some compact, time-symmetric, spacelike hypersurface
in a time-oriented spacetime satisfying the dominant energy
condition. Suppose the induced metric on has positive Gaussian
curvature and all boundary components of have positive mean curvature.
Suppose where is the mean curvature of in and
is the mean curvature of when isometrically embedded in .
If is not isometric to a domain in , then 1. the Brown-York mass
of in is a strict local minimum of the Wang-Yau quasi-local
energy of , 2. on a small perturbation of in
, there exists a critical point of the Wang-Yau quasi-local energy of
.Comment: substantially revised, main theorem replaced, Section 3 adde
- …