1 research outputs found

    Synthesis and Evaluation of New Generation Cross-Bridged Bifunctional Chelator for <sup>64</sup>Cu Radiotracers

    No full text
    Bifunctional chelators have been successfully used to construct <sup>64</sup>Cu-labeled radiopharmaceuticals. Previously reported chelators with cross-bridged cyclam backbones have various essential features such as high stability of the copper­(II) complex, high efficiency of radiolabeling at room temperature, and good biological inertness of the radiolabeled complex, along with rapid body clearance. Here, we report a new generation propylene-cross-bridged chelator with hybrid acetate/phosphonate pendant groups (PCB-TE1A1P) developed with the aim of combining these key properties in a single chelator. The PCB-TE1A1P was synthesized from cyclam with good overall yield. The Cu­(II) complex of our chelator showed good robustness in kinetic stability evaluation experiments, such as acidic decomplexation and cyclic voltammetry studies. The Cu­(II) complex of PCB-TE1A1P remained intact under highly acidic conditions (12 M HCl, 90 °C) for 8 d and showed quasi-reversible reduction/oxidation peaks at −0.77 V in electrochemical studies. PCB-TE1A1P was successfully radiolabeled with <sup>64</sup>Cu ions in an acetate buffer at 60 °C within 60 min. The electrophoresis study revealed that the <sup>64</sup>Cu-PCB-TE1A1P complex has net negative charge in aqueous solution. The biodistribution and in vivo stability study profiles of <sup>64</sup>Cu-PCB-TE1A1P indicated that the radioactive complex was stable under physiological conditions and cleared rapidly from the body. A whole body positron emission tomography (PET) imaging study further confirmed high in vivo stability and fast clearance of the complex in mouse models. In conclusion, PCB-TE1A1P has good potential as a bifunctional chelator for <sup>64</sup>Cu-based radiopharmaceuticals, especially those involving peptides
    corecore