26 research outputs found
Wavelength-division multiplexing optical Ising simulator enabling fully programmable spin couplings and external magnetic fields
Recently, spatial photonic Ising machines (SPIMs) have demonstrated the
abilities to compute the Ising Hamiltonian of large-scale spin systems, with
the advantages of ultrafast speed and high power efficiency. However, such
optical computations have been limited to specific Ising models with fully
connected couplings. Here we develop a wavelength-division multiplexing SPIM to
enable programmable spin couplings and external magnetic fields as well for
general Ising models. We experimentally demonstrate such a wavelength-division
multiplexing SPIM with a single spatial light modulator, where the gauge
transformation is implemented to eliminate the impact of pixel alignment. To
show the programmable capability of general spin coupling interactions, we
explore three spin systems: models, Sherrington-Kirkpatrick models, and
only locally connected models and observe the
phase transitions among the spin-glass, the ferromagnetic, the paramagnetic and
the stripe-antiferromagnetic phases. These results show that the
wavelength-division multiplexing approach has great programmable flexibility of
spin couplings and external magnetic fields, which provides the opportunities
to solve general combinatorial optimization problems with large-scale and
on-demand SPIM.Comment: 6 pages, 4 figure
Web Credibility: Features Exploration and Credibility Prediction
International audienceData Stream Processing (DSP) applications are often modelled as a directed acyclic graph: operators with data streams among them. Inter-operator communications can have a significant impact on the latency of DSP applications, accounting for 86% of the total latency. Despite their impact, there has been relatively little work on optimizing inter-operator communications, focusing on reducing inter-node traffic but not considering inter-process communication (IPC) inside a node, which often generates high latency due to the multiple memory-copy operations. This paper describes the design and implementation of TurboStream, a new DSP system designed specifically to address the high latency caused by inter-operator communications. To achieve this goal, we introduce (1) an improved IPC framework with OSRBuffer, a DSP-oriented buffer, to reduce memory-copy operations and waiting time of each single message when transmitting messages between the operators inside one node, and (2) a coarse-grained scheduler that consolidates operator instances and assigns them to nodes to diminish the inter-node IPC traffic. Using a prototype implementation, we show that our improved IPC framework reduces the end-to-end latency of intra-node IPC by 45.64% to 99.30%. Moreover, TurboStream reduces the latency of DSP by 83.23% compared to JStorm
Precise Two-Dimensional Tilt Measurement Sensor with Double-Cylindrical Mirror Structure and Modified Mean-Shift Algorithm for a Confocal Microscopy System
To improve the accuracy of three-dimensional (3D) surface contour measurements of freeform optics, a two-dimensional (2D) tilt measurement sensor for confocal microscopy (CM) systems is proposed based on a double-cylindrical mirror structure. First, the proposed system is accurately modeled. Second, we introduce a modified mean–shift-based peak-extraction algorithm with a novel kernel function (MSN) because the reflectivity of the measured object and fluctuation of the light source affect the measurement accuracy. Third, a partition fitting (PF) strategy is proposed to reduce the fitting error and improve the measurement accuracy. Simulations and experiments reveal that the robustness, speed, and angular prediction accuracy of the system effectively improved as a function of MSN and PF. The developed sensor can measure the 2D tilt, where each tilt is a composition of two separate dimensions, and the mean prediction errors in the 2D plane from −10°–+10° are 0.0134° (0.067% full scale (F.S)) and 0.0142° (0.071% F.S). The sensor enables the optical probe of a traditional CM to obtain accurate and simultaneous estimates of the 2D inclination angle and spatial position coordinates of the measured surface. The proposed sensor has potential in 3D topographic reconstruction and dynamic sampling rate optimization for 3D contour detection
A Differential Confocal Sensor for Simultaneous Position and Slope Acquisitions Based on a Zero-Crossing Prediction Algorithm
A new sensor type is proposed to accurately detect the surface profiles of three-dimensional (3D) free-form surfaces. This sensor is based on the single-exposure, zero-crossing method and is used to measure position and angle simultaneously. First, the field intensity distribution in the posterior focal plane of the confocal microscope’s objective was modeled accurately. Second, because the camera needs to trigger acquisition when the surface (to be measured) reaches the focal position of the sensor, a zero-crossing prediction method based on a sliding window was proposed. Third, a fast, spatially convergent, peak-extraction algorithm was proposed to improve the accuracy and efficiency of peak extraction. This scheme reduces system installation and adjustment difficulties, and the single-exposure, zero-crossing method achieves high-speed, real-time image acquisitions. The experimental results indicate that the average error of the zero-crossing prediction system was 17.63 nm, the average error of the tilt degree measurement was 0.011° in the range of 0–8°, and the prediction error of the tilt direction measurement was 0.089° in the range of 0–360°. The sensor can measure the slope and can be potentially used for 3D surface precision detection
Characterization of Enterococcus faecalis phage IME-EF1 and its endolysin.
Enterococcus faecalis is increasingly becoming an important nosocomial infection opportunistic pathogen. E. faecalis can easily obtain drug resistance, making it difficult to be controlled in clinical settings. Using bacteriophage as an alternative treatment to drug-resistant bacteria has been revitalized recently, especially for fighting drug-resistant bacteria. In this research, an E. faecalis bacteriophage named IME-EF1 was isolated from hospital sewage. Whole genomic sequence analysis demonstrated that the isolated IME-EF1 belong to the Siphoviridae family, and has a linear double-stranded DNA genome consisting of 57,081 nucleotides. The IME-EF1 genome has a 40.04% G+C content and contains 98 putative coding sequences. In addition, IME-EF1 has an isometric head with a width of 35 nm to 60 nm and length of 75 nm to 90 nm, as well as morphology resembling a tadpole. IME-EF1 can adsorb to its host cells within 9 min, with an absorbance rate more than 99% and a latent period time of 25 min. The endolysin of IME-EF1 contains a CHAP domain in its N-terminal and has a wider bactericidal spectrum than its parental bacteriophage, including 2 strains of vancomycin-resistant E. faecalis. When administrated intraperitoneally, one dose of IME-EF1 or its endolysin can reduce bacterial count in the blood and protected the mice from a lethal challenge of E. faecalis, with a survival rate of 60% or 80%, respectively. Although bacteriophage could rescue mice from bacterial challenge, to the best of our knowledge, this study further supports the potential function of bacteriophage in dealing with E. faecalis infection in vivo. The results also indicated that the newly isolated bacteriophage IME-EF1 enriched the arsenal library of lytic E. faecalis bacteriophages and presented another choice for phage therapy in the future
High-Throughput Analysis of the T Cell Receptor Beta Chain Repertoire in PBMCs from Chronic Hepatitis B Patients with HBeAg Seroconversion
T lymphocytes are the most important immune cells that affect both the development and treatment of hepatitis B. We used high-throughput sequencing to determine the diversity in the V and J regions of the TCRβ chain in 4 chronic hepatitis B patients before and after HBeAg seroconversion. Here, we demonstrate that the 4 patients expressed Vβ12-4 at the highest frequencies of 10.6%, 9.2%, 17.5%, and 7.5%, and Vβ28 was the second most common, with frequencies of 7.8%, 6.7%, 5.3%, and 10.9%, respectively. No significant changes were observed following seroconversion. With regard to the Jβ gene, Jβ2-1 was the most commonly expressed in the 4 patients at frequencies of 5.8%, 6.5%, 11.3%, and 7.3%, respectively. Analysis of the V-J region genes revealed several differences, including significant increases in the expression levels of V7-2-01-J2-1, V12-4-J1-1, and V28-1-J1-5 and a decrease in that of V19-01-J2-3. These results illustrate the presence of biased TCRVβ and Jβ gene expression in the chronic hepatitis B patients. TRBVβ12-4, Vβ28, Jβ2-1, V7-2-01-J2-1, V12-4-J1-1, and V28-1-J1-5 may be associated with the development and treatment of CHB
The Impact of Individual Differences, Types of Model and Social Settings on Block Building Performance among Chinese Preschoolers
Children’s block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children’s block building performance. Chinese preschoolers (N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children’s block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation
High-Throughput Analysis of the T Cell Receptor Beta Chain Repertoire in PBMCs from Chronic Hepatitis B Patients with HBeAg Seroconversion
T lymphocytes are the most important immune cells that affect both the development and treatment of hepatitis B. We used high-throughput sequencing to determine the diversity in the V and J regions of the TCRβ chain in 4 chronic hepatitis B patients before and after HBeAg seroconversion. Here, we demonstrate that the 4 patients expressed Vβ12-4 at the highest frequencies of 10.6%, 9.2%, 17.5%, and 7.5%, and Vβ28 was the second most common, with frequencies of 7.8%, 6.7%, 5.3%, and 10.9%, respectively. No significant changes were observed following seroconversion. With regard to the Jβ gene, Jβ2-1 was the most commonly expressed in the 4 patients at frequencies of 5.8%, 6.5%, 11.3%, and 7.3%, respectively. Analysis of the V-J region genes revealed several differences, including significant increases in the expression levels of V7-2-01-J2-1, V12-4-J1-1, and V28-1-J1-5 and a decrease in that of V19-01-J2-3. These results illustrate the presence of biased TCRVβ and Jβ gene expression in the chronic hepatitis B patients. TRBVβ12-4, Vβ28, Jβ2-1, V7-2-01-J2-1, V12-4-J1-1, and V28-1-J1-5 may be associated with the development and treatment of CHB