3 research outputs found

    Wnt11/Fzd7 signaling compartmentalizes AKAP2/PKA to regulate L-type Ca2+ channel

    Get PDF
    Calcium influx through the voltage-gated L-type calcium channels (LTCC) mediates a wide range of physiological processes from contraction to secretion. Despite extensive research on regulation of LTCC conductance by PKA phosphorylation in response to β-adrenergic stimulation, the science remains incomplete. Here, we show that Wnt11, a non-canonical Wnt ligand, through its G protein-coupled receptor (GPCR) Fzd7 attenuates the LTCC conductance by preventing the proteolytic processing of its C terminus. This is mediated across species by protein kinase A (PKA), which is compartmentalized by A-kinase anchoring proteins (AKAP). Systematic analysis of all AKAP family members revealed AKAP2 anchoring of PKA is central to the Wnt11-dependent regulation of the channel. The identified Wnt11/AKAP2/PKA signalosome is required for heart development, controlling the intercellular electrical coupling in the developing zebrafish heart. Altogether, our data revealed Wnt11/Fzd7 signaling via AKAP2/PKA as a conserved alternative GPCR system regulating Ca(2+) homeostasis

    Cpxm2 as a novel candidate for cardiac hypertrophy and failure in hypertension

    Get PDF
    Treatment of hypertension-mediated cardiac damage with left ventricular (LV) hypertrophy (LVH) and heart failure remains challenging. To identify novel targets, we performed comparative transcriptome analysis between genetic models derived from stroke-prone spontaneously hypertensive rats (SHRSP). Here, we identified carboxypeptidase X 2 (Cpxm2) as a genetic locus affecting LV mass. Analysis of isolated rat cardiomyocytes and cardiofibroblasts indicated Cpxm2 expression and intrinsic upregulation in genetic hypertension. Immunostaining indicated that CPXM2 associates with the t-tubule network of cardiomyocytes. The functional role of Cpxm2 was further investigated in Cpxm2-deficient (KO) and wild-type (WT) mice exposed to deoxycorticosterone acetate (DOCA). WT and KO animals developed severe and similar systolic hypertension in response to DOCA. WT mice developed severe LV damage, including increases in LV masses and diameters, impairment of LV systolic and diastolic function and reduced ejection fraction. These changes were significantly ameliorated or even normalized (i.e., ejection fraction) in KO-DOCA animals. LV transcriptome analysis showed a molecular cardiac hypertrophy/remodeling signature in WT but not KO mice with significant upregulation of 1234 transcripts, including Cpxm2, in response to DOCA. Analysis of endomyocardial biopsies from patients with cardiac hypertrophy indicated significant upregulation of CPXM2 expression. These data support further translational investigation of CPXM2

    Neuroinflammation in Alzheimer’s Disease: Microglia, Molecular Participants and Therapeutic Choices

    No full text
    corecore