15 research outputs found

    Novel splice variants associated with one of the zebrafish dnmt3 genes

    Get PDF
    BACKGROUND: DNA methylation and the methyltransferases are known to be important in vertebrate development and this may be particularly true for the Dnmt3 family of enzymes because they are thought to be the de novo methyltransferases. Mammals have three Dnmt3 genes; Dnmt3a, Dnmt3b, and Dnmt3L, two of which encode active enzymes and one of which produces an inactive but necessary cofactor. However, due to multiple promoter use and alternative splicing there are actually a number of dnmt3 isoforms present. Six different dnmt3 genes have recently been identified in zebrafish. RESULTS: We have examined two of the dnmt3 genes in zebrafish that are located in close proximity in the same linkage group and we find that the two genes are more similar to each other than they are to the other zebrafish dnmt3 genes. We have found evidence for the existence of several different splice variants and alternative splice sites associated with one of the two genes and have examined the relative expression of these genes/variants in a number of zebrafish developmental stages and tissues. CONCLUSION: The similarity of the dnmt3-1 and dnmt3-2 genes suggests that they arose due to a relatively recent gene duplication event. The presence of alternative splice and start sites, reminiscent of what is seen with the human DNMT3s, demonstrates strong parallels between the control/function of these genes across vertebrate species. The dynamic expression levels of these genes/variants suggest that they may well play a role in early development and this is particularly true for dnmt3-2-1 and dnmt3-1. dnmt3-2-1 is the predominantly expressed form prior to zygotic gene activation whereas dnmt3-1 predominates post zygotic gene activation suggesting a distinct developmental role for each

    Isolated sulfite oxidase deficiency: a founder mutation.

    Get PDF
    Isolated sulfite oxidase deficiency is a rare autosomal recessive inborn error of sulfur metabolism. Clinical features generally include devastating neurologic dysfunction, ectopia lentis, and increased urinary excretion of sulfite, thiosulfate, an

    Health services use among children diagnosed with medium-chain acyl-CoA dehydrogenase deficiency through newborn screening: A cohort study in Ontario, Canada

    Get PDF
    Background: We describe early health services utilization for children diagnosed with medium-chain acyl-CoA dehydrogenase (MCAD) deficiency through newborn screening in Ontario, Canada, relative to a screen negative comparison cohort. Methods: Eligible children were identified via newborn screening between April 1, 2006 and March 31, 2010. Age-stratified rates of physician encounters, emergency department (ED) visits and inpatient hospitalizations to March 31, 2012 were compared using incidence rate ratios (IRR) and incidence rate differences (IRD). We used negative binomial regression to adjust IRRs for sex, gestational age, birth weight, socioeconomic status and rural/urban residence. Results: Throughout the first few years of life, children with MCAD deficiency (n = 40) experienced statistically significantly higher rates of physician encounters, ED visits, and hospital stays compared with the screen negative cohort. The highest rates of ED visits and hospitalizations in the MCAD deficiency cohort occurred from 6 months to 2 years of age (ED use: 2.1-2.5 visits per child per year; hospitalization: 0.5-0.6 visits per child per year), after which rates gradually declined. Conclusions: This study confirms that young children with MCAD deficiency use health services more frequently than the general population throughout the first few years of life. Rates of service use in this population gradually diminish after 24 months of age

    Achieving the "triple aim" for inborn errors of metabolism: a review of challenges to outcomes research and presentation of a new practice-based evidence framework

    Get PDF
    Across all areas of health care, decision makers are in pursuit of what Berwick and colleagues have called the “triple aim”: improving patient experiences with care, improving health outcomes, and managing health system impacts. This is challenging in a rare disease context, as exemplified by inborn errors of metabolism. There is a need for evaluative outcomes research to support effective and appropriate care for inborn errors of metabolism. We suggest that such research should consider interventions at both the level of the health system (e.g., early detection through newborn screening, programs to provide access to treatments) and the level of individual patient care (e.g., orphan drugs, medical foods). We have developed a practice- based evidence framework to guide outcomes research for inborn errors of metabolism. Focusing on outcomes across the triple aim, this framework integrates three priority themes: tailoring care in the context of clinical heterogeneity; a shift from “urgent care” to “opportunity for improvement”; and the need to evaluate the comparative effectiveness of emerging and established therapies. Guided by the framework, a new Canadian research network has been established to generate knowledge that will inform the design and delivery of health services for patients with inborn errors of metabolism and other rare diseases.This work was supported by a CIHR Emerging Team Grant (“Emerging team in rare diseases: acheiving the ‘triple aim’ for inborn errors of metabolism,” B.K. Potter, P. Chakraborty, and colleagues, 2012– 2017, grant no. TR3–119195). Current investigators and collaborators in the Canadian Inherited Metabolic Diseases Research Network are: B.K. Potter, P. Chakraborty, J. Kronick, D. Coyle, K. Wilson, M. Brownell, R. Casey, A. Chan, S. Dyack, L. Dodds, A. Feigenbaum, D. Fell, M. Geraghty, C. Greenberg, S. Grosse, A. Guttmann, A. Khan, J. Little, B. Maranda, J. MacKenzie, A. Mhanni, F. Miller, G. Mitchell, J. Mitchell, M. Nakhla, M. Potter, C. Prasad, K. Siriwardena, K.N. Speechley, S. Stocker, L. Turner, H. Vallance, and B.J. Wilson. Members of our external advisory board are D. Bidulka, T. Caulfield, J.T.R. Clarke, C. Doiron, K. El Emam, J. Evans, A. Kemper, W. McCormack, and A. Stephenson Julian. J. Little is supported by a Canada Research Chair in Human Genome Epidemiology. K. Wilson is supported by a Canada Research Chair in Public Health Policy

    Prolonged survival and serial magnetic resonance imaging/magnetic resonance spectroscopy changes in infantile Krabbe disease

    No full text
    Krabbe disease may present during infancy, late infancy, or adulthood. Earlier-onset disease is associated with shorter survival times. We present a case of infantile onset Krabbe disease with prolonged survival, initial intracranial optic nerves and optic chiasm hypertrophy, and serial changes on cranial magnetic resonance imaging and magnetic resonance spectroscopy.Peer reviewed: YesNRC publication: Ye

    GPSM2 Mutations Cause the Brain Malformations and Hearing Loss in Chudley-McCullough Syndrome

    Get PDF
    Autosomal-recessive inheritance, severe to profound sensorineural hearing loss, and partial agenesis of the corpus callosum are hallmarks of the clinically well-established Chudley-McCullough syndrome (CMS). Although not always reported in the literature, frontal polymicrogyria and gray matter heterotopia are uniformly present, whereas cerebellar dysplasia, ventriculomegaly, and arachnoid cysts are nearly invariant. Despite these striking brain malformations, individuals with CMS generally do not present with significant neurodevelopmental abnormalities, except for hearing loss. Homozygosity mapping and whole-exome sequencing of DNA from affected individuals in eight families (including the family in the first report of CMS) revealed four molecular variations (two single-base deletions, a nonsense mutation, and a canonical splice-site mutation) in the G protein-signaling modulator 2 gene, GPSM2 , that underlie CMS. Mutations in GPSM2 have been previously identified in people with profound congenital nonsyndromic hearing loss (NSHL). Subsequent brain imaging of these individuals revealed frontal polymicrogyria, abnormal corpus callosum, and gray matter heterotopia, consistent with a CMS diagnosis, but no ventriculomegaly. The gene product, GPSM2, is required for orienting the mitotic spindle during cell division in multiple tissues, suggesting that the sensorineural hearing loss and characteristic brain malformations of CMS are due to defects in asymmetric cell divisions during development
    corecore