120 research outputs found

    An Electrochemical Platform for the Carbon Dioxide Capture and Conversion to Syngas

    Get PDF
    We report on a simple electrochemical system able to capture gaseous carbon dioxide from a gas mixture and convert it into syngas. The capture/release module is implemented via regeneration of NaOH and acidification of NaHCO3 inside a four-chamber electrochemical flow cell employing Pt foils as catalysts, while the conversion is carried out by a coupled reactor that performs electrochemical reduction of carbon dioxide using ZnO as a catalyst and KHCO3 as an electrolyte. The capture module is optimized such that, powered by a current density of 100 mA/cm2 , from a mixture of the CO2–N2 gas stream, a pure and stable CO2 outlet flow of 4–5 mL/min is obtained. The conversion module is able to convert the carbon dioxide into a mixture of gaseous CO and H2 (syngas) with a selectivity for the carbon monoxide of 56%. This represents the first all-electrochemical system for carbon dioxide capture and conversion

    Can vitamin D deficiency cause diabetes and cardiovascular diseases? Present evidence and future perspectives

    Get PDF
    Several studies have shown that vitamin D may play a role in many biochemical mechanisms in addition to bone and calcium metabolism. Recently, vitamin D has sparked widespread interest because of its involvement in the homeostasis of the cardiovascular system. Hypovitaminosis D has been associated with obesity, related to trapping in adipose tissue due to its lipophilic structure. In addition, vitamin D deficiency is associated with increased risk of cardiovascular disease (CVD) and this may be due to the relationship between low vitamin D levels and obesity, diabetes mellitus, dyslipidaemia, endothelial dysfunction and hypertension. However, although vitamin D has been identified as a potentially important marker of CVD, the mechanisms through which it might modulate cardiovascular risk are not fully understood. Given this background, in this work we summarise clinical retrospective and prospective observational studies linking vitamin D levels with cardio-metabolic risk factors and vascular outcome. Moreover, we review various randomised controlled trials (RCTs) investigating the effects of vitamin D supplementation on surrogate markers of cardiovascular risk. Considering the high prevalence of hypovitaminosis D among patients with high cardiovascular risk, vitamin D replacement therapy in this population may be warranted; however, further RCTs are urgently needed to establish when to begin vitamin D therapy, as well as to determine the dose and route and duration of administration. © 2011 Elsevier B.V

    Pancreaticoduodenectomy model demonstrates a fundamental role of dysfunctional β cells in predicting diabetes

    Get PDF
    BACKGROUND. The appearance of hyperglycemia is due to insulin resistance, functional deficits in the secretion of insulin, and a reduction of β cell mass. There is a long-standing debate as to the relative contribution of these factors to clinically manifesting β cell dysfunction. The aim of this study was to verify the acute effect of one of these factors, the reduction of β cell mass, on the subsequent development of hyperglycemia. METHODS. To pursue this aim, nondiabetic patients, scheduled for identical pancreaticoduodenectomy surgery, underwent oral glucose tolerance tests (OGTT) and hyperglycemic clamp (HC) procedures, followed by arginine stimulation before and after surgery. Based on postsurgery OGTT, subjects were divided into 3 groups depending on glucose tolerance: normal glucose tolerance (post-NGT), impaired glucose tolerance (post-IGT), or having diabetes mellitus (post-DM). RESULTS. At baseline, the 3 groups showed similar fasting glucose and insulin levels; however, examining the various parameters, we found that reduced first-phase insulin secretion, reduced glucose sensitivity, and rate sensitivity were predictors of eventual postsurgery development of IGT and diabetes. CONCLUSION. Despite comparable functional mass and fasting glucose and insulin levels at baseline and the very same 50% mass reduction, only reduced first-phase insulin secretion and glucose sensitivity predicted the appearance of hyperglycemia. These functional alterations could be pivotal to the pathogenesis of type 2 diabetes (T2DM)

    Substrate-based atom waveguide using guided two-color evanescent light fields

    Full text link
    We propose a dipole-force linear waveguide which confines neutral atoms up to lambda/2 above a microfabricated single-mode dielectric optical guide. The optical guide carries far blue-detuned light in the horizontally-polarized TE mode and far red-detuned light in the vertically-polarized TM mode, with both modes close to optical cut-off. A trapping minimum in the transverse plane is formed above the optical guide due to the differing evanescent decay lengths of the two modes. This design allows manufacture of mechanically stable atom-optical elements on a substrate. We calculate the full vector bound modes for an arbitrary guide shape using two-dimensional non-uniform finite elements in the frequency-domain, allowing us to optimize atom waveguide properties. We find that a rectangular optical guide of 0.8um by 0.2um carrying 6mW of total laser power (detuning +-15nm about the D2 line) gives a trap depth of 200uK for cesium atoms (m_F = 0), transverse oscillation frequencies of f_x = 40kHz and f_y = 160kHz, collection area ~ 1um^2 and coherence time of 9ms. We discuss the effects of non-zero m_F, surface interactions, heating rate, the substrate refractive index, and the limits on waveguide bending radius.Comment: 12 pages, 4 figures, revtex, submitted to Phys. Rev. A Replaced: final version accepted by PRA v.61 Feb 2000. (2 paragraphs added

    Effect of Dapagliflozin on Myocardial Insulin Sensitivity and Perfusion: Rationale and Design of The DAPAHEART Trial

    Get PDF
    Introduction: Sodium-glucose co-transporter-2 (SGLT-2) inhibitors have been shown to have beneficial effects on various cardiovascular (CV) outcomes in patients with type 2 diabetes (T2D) in primary prevention and in those with a high CV risk profile. However, the mechanism(s) responsible for these CV benefits remain elusive and unexplained. The aim of the DAPAHEART study will be to demonstrate that treatment with SGLT-2 inhibitors is associated with greater myocardial insulin sensitivity in patients with T2D, and to determine whether this improvement can be attributed to a decrease in whole-body (and tissue-specific) insulin resistance and to increased myocardial perfusion and/or glucose uptake. We will also determine whether there is an appreciable degree of improvement in myocardial-wall conditions subtended by affected and non-affected coronary vessels, and if this relates to changes in left ventricular function. Methods: The DAPAHEART trial will be a phase III, single-center, randomized, two-arm, parallel-group, double-blind, placebo-controlled study. A cohort of 52 T2D patients with stable coronary artery disease (without any previous history of myocardial infarction, with or without previous percutaneous coronary intervention), with suboptimal glycemic control (glycated hemoglobin [HbA1c] 7\u20138.5%) on their current standard of care anti-hyperglycemic regimen, will be randomized in a 1:1 ratio to dapagliflozin or placebo. The primary outcome is to detect changes in myocardial glucose uptake from baseline to 4 weeks after treatment initiation. The main secondary outcome will be changes in myocardial blood flow, as measured by 13N-ammonia positron emission tomography/computed tomography (PET/CT). Other outcomes include cardiac function, glucose uptake in skeletal muscle, adipose tissue, liver, brain and kidney, as assessed by fluorodeoxyglucose (FDG) PET-CT imaging during hyperinsulinemic-euglycemic clamp; pericardial, subcutaneous and visceral fat, and browning as observed on CT images during FDG PET-CT studies; systemic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamp, glycemic control, urinary glucose output; and microbiota modification. Discussion: SGLT-2 inhibitors, in addition to their insulin-independent plasma glucose-lowering effect, are able to directly (substrate availability, fuel utilization, insulin sensitivity) as well as indirectly (cardiac after-load reduction, decreased risk factors for heart failure) affect myocardial functions. Our study will provide novel insights into how these drugs exert CV protection in a diabetic population. Trial registration: EudraCT No. 2016-003614-27; ClinicalTrials.gov Identifier: NCT03313752

    Segmented flow generator for serial crystallography at the European X-ray free electron laser

    Get PDF
    Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported

    Traditional Excluding Forces: A Review of the Quantitative Literature on the Economic Situation of Indigenous Peoples, Afro-Descendants, and People Living with Disability

    Full text link
    corecore