231 research outputs found

    The resolved structure of the extragalactic supernova remnant SNR 4449-1

    Get PDF
    We present very long baseline interferometry (VLBI) observations of the milliarcsecond-scale radio structure of the supernova remnant SNR 4449−-1 in the galaxy NGC 4449. This young and superluminous remnant was observed at 1.6 GHz (λ=18\lambda = 18\,cm) with the European VLBI Network. The observations confirm earlier identifications of this object with a supernova remnant (SNR) while revealing a somewhat different morphology compared with the structure reported by Bietenholz et al. from VLBI observations at 1.4 GHz. This difference is discussed here in the context of structural sensitivity of both observations. The 1.6 GHz image yields accurate estimates of the size (0.0422 arcsec ×\times 0.0285 arcsec and 0.8 ×\times 0.5 pc) and age (∼\sim55 yr) of SNR 4449−-1. With a total flux of 6.1 ±\pm 0.6 mJy measured in the VLBI image, the historical lightcurve of the source can be well represented by a power-law decay with a power index of −-1.19 ±\pm 0.07. The SNR exhibits a decline rate of the radio emission of 2.2% ±\pm 0.1% yr−1^{-1} and a radio luminosity of 1.74 ×\times 1035^{35} erg s−1^{-1}.Comment: 7 pages, 6 figures, MNRAS preprint, arXiv:1309.401

    The central parsecs of active galactic nuclei: challenges to the torus

    Full text link
    Type 2 AGN are by definition nuclei in which the broad-line region and continuum light are hidden at optical/UV wavelengths by dust. Via accurate registration of infrared (IR) Very Large Telescope adaptive optics images with optical \textit{Hubble Space Telescope} images we unambiguously identify the precise location of the nucleus of a sample of nearby, type 2 AGN. Dust extinction maps of the central few kpc of these galaxies are constructed from optical-IR colour images, which allow tracing the dust morphology at scales of few pc. In almost all cases, the IR nucleus is shifted by several tens of pc from the optical peak and its location is behind a dust filament, prompting to this being a major, if not the only, cause of the nucleus obscuration. These nuclear dust lanes have extinctions AV≥3−6A_V \geq 3-6 mag, sufficient to at least hide the low-luminosity AGN class, and in some cases are observed to connect with kpc-scale dust structures, suggesting that these are the nuclear fueling channels. A precise location of the ionised gas Hα\alpha and [\textsc{Si\,vii}] 2.48 μ\mum coronal emission lines relative to those of the IR nucleus and dust is determined. The Hα\alpha peak emission is often shifted from the nucleus location and its sometimes conical morphology appears not to be caused by a nuclear --torus-- collimation but to be strictly defined by the morphology of the nuclear dust lanes. Conversely, [\textsc{Si\,vii}] 2.48 μ\mum emission, less subjected to dust extinction, reflects the truly, rather isotropic, distribution of the ionised gas. All together, the precise location of the dust, ionised gas and nucleus is found compelling enough to cast doubts on the universality of the pc-scale torus and supports its vanishing in low-luminosity AGN. Finally, we provide the most accurate position of the NGC 1068 nucleus, located at the South vertex of cloud B.Comment: 23 pages, 10 figures, accepted for publication in MNRA

    Starbursts and black hole masses in X-shaped radio galaxies: Signatures of a merger event?

    Full text link
    We present new spectroscopic identifications of 12 X-shaped radio galaxies and use the spectral data to derive starburst histories and masses of the nuclear supermassive black holes in these galaxies. The observations were done with the 2.1-m telescope of the Observatorio Astron\'omico Nacional at San Pedro M\'artir, M\'exico. The new spectroscopic results extend the sample of X-shaped radio galaxies studied with optical spectroscopy. We show that the combined sample of the X-shaped radio galaxies has statistically higher black-hole masses and older episodes of star formation than a control sample of canonical double-lobed radio sources with similar redshifts and luminosities. The data reveal enhanced star-formation activity in the X-shaped sample on the timescales expected in galactic mergers. We discuss the results obtained in the framework of the merger scenario.Comment: 9 pages, 10 figures, accepted for publication in Astronomy & Astrophysic

    The central molecular gas structure in LINERs with low luminosity AGN: evidence for gradual disappearance of the torus

    Get PDF
    We present observations of the molecular gas in the nuclear environment of three prototypical low luminosity AGN (LLAGN), based on VLT/SINFONI AO-assisted integral-field spectroscopy of H2 1-0 S(1) emission at angular resolutions of ~0.17". On scales of 50-150 pc the spatial distribution and kinematics of the molecular gas are consistent with a rotating thin disk, where the ratio of rotation (V) to dispersion (sigma) exceeds unity. However, in the central 50 pc, the observations reveal a geometrically and optically thick structure of molecular gas (V/sigma10^{23} cm^{-2}) that is likely to be associated with the outer extent of any smaller scale obscuring structure. In contrast to Seyfert galaxies, the molecular gas in LLAGN has a V/sigma<1 over an area that is ~9 times smaller and column densities that are in average ~3 times smaller. We interpret these results as evidence for a gradual disappearance of the nuclear obscuring structure. While a disk wind may not be able to maintain a thick rotating structure at these luminosities, inflow of material into the nuclear region could provide sufficient energy to sustain it. In this context, LLAGN may represent the final phase of accretion in current theories of torus evolution. While the inflow rate is considerable during the Seyfert phase, it is slowly decreasing, and the collisional disk is gradually transitioning to become geometrically thin. Furthermore, the nuclear region of these LLAGN is dominated by intermediate-age/old stellar populations (with little or no on-going star formation), consistent with a late stage of evolution.Comment: 15 pages, including 4 figures and 1 table, Accepted for publication in ApJ Letter

    Radio Emission From a z=z = 10.3 Black Hole in UHZ1

    Full text link
    The recent discovery of a 4 ×\times 107^7 M⊙_{\odot} black hole (BH) in UHZ1 at z=z = 10.3, just 450 Myr after the big bang, suggests that the seeds of the first quasars may have been direct-collapse black holes (DCBHs) from the collapse of supermassive primordial stars at z∼z \sim 20. This object was identified in James Webb Space Telescope (JWST) NIRcam and Chandra X-ray data, but recent studies suggest that radio emission from such a BH should also be visible to the Square Kilometer Array (SKA) and the next-generation Very Large Array (ngVLA). Here, we present estimates of radio flux for UHZ1 from 0.1 - 10 GHz, and find that SKA and ngVLA could detect it with integration times of 10 - 100 hr and just 1 - 10 hr, respectively. It may be possible to see this object with VLA now with longer integration times. The detection of radio emission from UHZ1 would be a first test of exciting new synergies between near infrared (NIR) and radio observatories that could open the era of z∼z \sim 5 - 15 quasar astronomy in the coming decade.Comment: 5 pages, 2 figures, submitted to Ap

    Radio Emission from the First Quasars at z∼z \sim 6-15

    Full text link
    Nearly 300 quasars have now been found at z>z > 6, including nine at z>z > 7. They are thought to form from the collapse of supermassive primordial stars to 104^4 - 105^5 M⊙_{\odot} black holes at z∼z \sim 20 - 25, which then rapidly grow in the low-shear environments of rare, massive halos fed by strong accretion flows. Sensitive new radio telescopes such as the Next-Generation Very Large Array (ngVLA) and the Square Kilometer Array (SKA) could probe the evolution of these objects at much earlier times. Here, we estimate radio flux from the first quasars at z∼z \sim 6 - 15 at 0.5 - 12.5 GHz. We find that SKA and ngVLA could detect a quasar like ULAS J1120+0641, a 1.35 ×\times 109^9 M⊙_{\odot} black hole at z=z = 7.1, at much earlier stages of evolution, z∼z \sim 14 - 15, with 100 hr integration times in targeted searches. The advent of these new observatories, together with the James Webb Space Telescope (JWST), Euclid, and the Roman Space Telescope (RST), will inaugurate the era of z≲z \lesssim 15 quasar astronomy in the coming decade.Comment: 5 pages, 3 figures, accepted by MNRAS Letter
    • …
    corecore