18 research outputs found

    Temporal Changes in Ventilator Settings in Patients With Uninjured Lungs: A Systematic Review

    No full text
    In patients with uninjured lungs, increasing evidence indicates that tidal volume (VT) reduction improves outcomes in the intensive care unit (ICU) and in the operating room (OR). However, the degree to which this evidence has translated to clinical changes in ventilator settings for patients with uninjured lungs is unknown. To clarify whether ventilator settings have changed, we searched MEDLINE, Cochrane Central Register of Controlled Trials, and Web of Science for publications on invasive ventilation in ICUs or ORs, excluding those on patients 25% of patients with acute respiratory distress syndrome (ARDS). Our primary end point was temporal change in VT over time. Secondary end points were changes in maximum airway pressure, mean airway pressure, positive end-expiratory pressure, inspiratory oxygen fraction, development of ARDS (ICU studies only), and postoperative pulmonary complications (OR studies only) determined using correlation analysis and linear regression. We identified 96 ICU and 96 OR studies comprising 130,316 patients from 1975 to 2014 and observed that in the ICU, VT size decreased annually by 0.16 mL/kg (-0.19 to -0.12 mL/kg) (P < .001), while positive end-expiratory pressure increased by an average of 0.1 mbar/y (0.02-0.17 mbar/y) (P = .017). In the OR, VT size decreased by 0.09 mL/kg per year (-0.14 to -0.04 mL/kg per year) (P < .001). The change in VTs leveled off in 1995. Other intraoperative ventilator settings did not change in the study period. Incidences of ARDS (ICU studies) and postoperative pulmonary complications (OR studies) also did not change over time. We found that, during a 39-year period, from 1975 to 2014, VTs in clinical studies on mechanical ventilation have decreased significantly in the ICU and in the OR

    Temporal Changes in Ventilator Settings in Patients With Uninjured Lungs: A Systematic Review

    No full text
    In patients with uninjured lungs, increasing evidence indicates that tidal volume (VT) reduction improves outcomes in the intensive care unit (ICU) and in the operating room (OR). However, the degree to which this evidence has translated to clinical changes in ventilator settings for patients with uninjured lungs is unknown. To clarify whether ventilator settings have changed, we searched MEDLINE, Cochrane Central Register of Controlled Trials, and Web of Science for publications on invasive ventilation in ICUs or ORs, excluding those on patients 25% of patients with acute respiratory distress syndrome (ARDS). Our primary end point was temporal change in VT over time. Secondary end points were changes in maximum airway pressure, mean airway pressure, positive end-expiratory pressure, inspiratory oxygen fraction, development of ARDS (ICU studies only), and postoperative pulmonary complications (OR studies only) determined using correlation analysis and linear regression. We identified 96 ICU and 96 OR studies comprising 130,316 patients from 1975 to 2014 and observed that in the ICU, VT size decreased annually by 0.16 mL/kg (-0.19 to -0.12 mL/kg) (P < .001), while positive end-expiratory pressure increased by an average of 0.1 mbar/y (0.02-0.17 mbar/y) (P = .017). In the OR, VT size decreased by 0.09 mL/kg per year (-0.14 to -0.04 mL/kg per year) (P < .001). The change in VTs leveled off in 1995. Other intraoperative ventilator settings did not change in the study period. Incidences of ARDS (ICU studies) and postoperative pulmonary complications (OR studies) also did not change over time. We found that, during a 39-year period, from 1975 to 2014, VTs in clinical studies on mechanical ventilation have decreased significantly in the ICU and in the OR

    The release of cardioprotective humoral factors after remote ischemic preconditioning in humans is age- and sex-dependent

    No full text
    Abstract Background Preclinical and proof-of-concept studies suggest a cardioprotective effect of remote ischemic preconditioning (RIPC). However, two major clinical trials (ERICCA and RIPHeart) failed to show cardioprotection by RIPC. Aging and gender might be confounding factors of RIPC affecting the inter-organ signalling. Theoretically, confounding factors might prevent the protective potency of RIPC by interfering with cardiac signalling pathways, i.e. at the heart, and/or by affecting the release of humoral factor(s) from the remote organ, e.g. from the upper limb. This study investigated the effect of age and sex on the release of cardioprotective humoral factor(s) after RIPC in humans. Methods Blood samples were taken from young and aged, male and female volunteers before (control) and after RIPC (RIPC). To investigate the protective potency of the different plasma groups obtained from the human volunteers, isolated perfused hearts of young rats were used as bioassay. For this, hearts were perfused with the volunteer plasma (0.5% of coronary flow) before hearts underwent global ischemia and reperfusion. In addition, to characterize the protective potency of humoral factor(s) after RIPC to initiate protection not only in young but also aged hearts, plasma from young male volunteers were transferred to isolated hearts of aged rats. At the end of the experimental protocol, infarct sizes were determined by TTC-staining (expressed as % of left ventricle). Results RIPC plasma of young male volunteers reduced infarct size in young rat hearts from 47 ± 5 to 31 ± 10% (p = 0.02). In contrast, RIPC plasma of aged male volunteers had no protective effect. Infarct size after application of control plasma of young female volunteers was 33 ± 10%, and female RIPC plasma did not lead to an infarct size reduction. RIPC plasma of old female initiated no cardioprotection. RIPC plasma of young male volunteers reduced infarct size in isolated hearts from aged rats (41 ± 5% vs. 51 ± 5%; p < 0.001). Conclusions The release of humoral factor(s) into the blood after RIPC in humans is affected by both age and sex. In addition, these blood borne factor(s) are capable to initiate cardioprotection within the aged heart

    Genome-wide association study of myocardial infarction, atrial fibrillation, acute stroke, acute kidney injury and delirium after cardiac surgery – a sub-analysis of the RIPHeart-Study

    No full text
    Abstract Background The aim of our study was the identification of genetic variants associated with postoperative complications after cardiac surgery. Methods We conducted a prospective, double-blind, multicenter, randomized trial (RIPHeart). We performed a genome-wide association study (GWAS) in 1170 patients of both genders (871 males, 299 females) from the RIPHeart-Study cohort. Patients undergoing non-emergent cardiac surgery were included. Primary endpoint comprises a binary composite complication rate covering atrial fibrillation, delirium, non-fatal myocardial infarction, acute renal failure and/or any new stroke until hospital discharge with a maximum of fourteen days after surgery. Results A total of 547,644 genotyped markers were available for analysis. Following quality control and adjustment for clinical covariate, one SNP reached genome-wide significance (PHLPP2, rs78064607, p = 3.77 × 10− 8) and 139 (adjusted for all other outcomes) SNPs showed promising association with p < 1 × 10− 5 from the GWAS. Conclusions We identified several potential loci, in particular PHLPP2, BBS9, RyR2, DUSP4 and HSPA8, associated with new-onset of atrial fibrillation, delirium, myocardial infarction, acute kidney injury and stroke after cardiac surgery. Trial registration The study was registered with ClinicalTrials.gov NCT01067703, prospectively registered on 11 Feb 2010

    RIPHeart (Remote Ischemic Preconditioning for Heart Surgery) Study: Myocardial Dysfunction, Postoperative Neurocognitive Dysfunction, and 1 Year Follow-Up

    No full text
    corecore