4 research outputs found

    Towards photopharmacological antimicrobial chemotherapy using photoswitchable amidohydrolase inhibitors

    No full text
    Photopharmacological agents exhibit light-dependent biological activity and may have potential in the development of new antimicrobial agents/modalities. Amidohydrolase enzymes homologous to the well known human histone deacetylases (HDACs) are present in bacteria, including resistant organisms responsible for a significant number of hospital acquired infections and deaths. We report photopharmacological inhibitors of these enzymes, using two classes of photoswitch embedded in the inhibitor pharmacophore: azobenzenes and arylazopyrazoles. While both classes of inhibitor show excellent inhibitory activity (nM IC50 values) of the target enzymes and promising differential activity of the switchable E- and Z-isomeric forms, the arylazopyrazoles exhibit better intrinsic photoswitch performance (more complete switching, longer thermal lifetime of the Zā€‘isomer). We also report protein-ligand crystal structures of the E-isomers of both an azobenzene and an arylazopyrazole inhibitor, bound to bacterial histone deacetylase-like amidohydrolases (HDAHs). These structures not only uncover interactions important for inhibitor binding, but also reveal conformational differences between the two photoswitch inhibitor classes. As such, our data may pave the way for the design of improved photopharmacological agents targeting the HDAC superfamily
    corecore