80 research outputs found
Is Fairtrade in commercial farms justifiable?: its impact on commercial and small-scale producers in South Africa
Fairtrade initially was limited to improving the lives of small-scale and peasant farmers, but later on it embraced commercial farmers, which attracted criticism. While there are a number of justifications for the Fairtrade organization's decision, there are authors who feel that meaningful âfair tradeâ cannot be achieved with the inclusion of commercial farms. This paper investigates the impact of Fairtrade on commercial farms and small-scale farmer cooperatives in South Africa. Fairtrade on South African commercial farms embraces a number of policy concerns related to land reform, BEE and sustainable development. The results of the study show that when commercial farms are included in the Fairtrade model, communities in which these farmers live benefit from developmental projects. In addition, in some instances, farm workers gain shares in the commercial farms, and benefit from the farm ownersâ knowledge and capital
Organizational and Leadership Implications for Transformational Development
Transformational development is a concept of change that originated in the Christian context but has now become generally used in the work of both secular and faith-based organizations. The growing use of the concept by organizations that are fundamentally different has naturally led to some confusion about what the concept means and what it takes to effectively implement it. In this article, we describe the key features of the concept and how they are important in determining the organizational requirements for its effective implementation. Drawing on a few cases, the paper highlights the centrality of faith in transformational development work
Observation of a Narrow Resonance of Mass 2.46 GeV/c^2 Decaying to D_s^*+ pi^0 and Confirmation of the D_sJ^* (2317) State
Using 13.5 inverse fb of e+e- annihilation data collected with the CLEO II
detector we have observed a narrow resonance in the Ds*+pi0 final state, with a
mass near 2.46 GeV. The search for such a state was motivated by the recent
discovery by the BaBar Collaboration of a narrow state at 2.32 GeV, the
DsJ*(2317)+ that decays to Ds+pi0. Reconstructing the Ds+pi0 and Ds*+pi0 final
states in CLEO data, we observe peaks in both of the corresponding
reconstructed mass difference distributions, dM(Dspi0)=M(Dspi0)-M(Ds) and
dM(Ds*pi0)=M(Ds*pi0)-M(Ds*), both of them at values near 350 MeV. We interpret
these peaks as signatures of two distinct states, the DsJ*(2317)+ plus a new
state, designated as the DsJ(2463)+. Because of the similar dM values, each of
these states represents a source of background for the other if photons are
lost, ignored or added. A quantitative accounting of these reflections confirms
that both states exist. We have measured the mean mass differences
= 350.0 +/- 1.2 [stat] +/- 1.0 [syst] MeV for the DsJ*(2317) state, and
= 351.2 +/- 1.7 [stat] +/- 1.0 [syst] MeV for the new DsJ(2463)+
state. We have also searched, but find no evidence, for decays of the two
states via the channels Ds*+gamma, Ds+gamma, and Ds+pi+pi-. The observations of
the two states at 2.32 and 2.46 GeV, in the Ds+pi0 and Ds*+pi0 decay channels
respectively, are consistent with their interpretations as (c anti-strange)
mesons with orbital angular momentum L=1, and spin-parities of 0+ and 1+.Comment: 16 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, version to be published in Physical
Review D; minor modifications and fixes to typographical errors, plus an
added section on production properties. The main results are unchanged; they
supersede those reported in hep-ex/030501
Measurement of the Charge Asymmetry in
We report on a search for a CP-violating asymmetry in the charmless hadronic
decay B -> K*(892)+- pi-+, using 9.12 fb^-1 of integrated luminosity produced
at \sqrt{s}=10.58 GeV and collected with the CLEO detector. We find A_{CP}(B ->
K*(892)+- pi-+) = 0.26+0.33-0.34(stat.)+0.10-0.08(syst.), giving an allowed
interval of [-0.31,0.78] at the 90% confidence level.Comment: 7 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Study of the q^2-Dependence of B --> pi ell nu and B --> rho(omega)ell nu Decay and Extraction of |V_ub|
We report on determinations of |Vub| resulting from studies of the branching
fraction and q^2 distributions in exclusive semileptonic B decays that proceed
via the b->u transition. Our data set consists of the 9.7x10^6 BBbar meson
pairs collected at the Y(4S) resonance with the CLEO II detector. We measure
B(B0 -> pi- l+ nu) = (1.33 +- 0.18 +- 0.11 +- 0.01 +- 0.07)x10^{-4} and B(B0 ->
rho- l+ nu) = (2.17 +- 0.34 +0.47/-0.54 +- 0.41 +- 0.01)x10^{-4}, where the
errors are statistical, experimental systematic, systematic due to residual
form-factor uncertainties in the signal, and systematic due to residual
form-factor uncertainties in the cross-feed modes, respectively. We also find
B(B+ -> eta l+ nu) = (0.84 +- 0.31 +- 0.16 +- 0.09)x10^{-4}, consistent with
what is expected from the B -> pi l nu mode and quark model symmetries. We
extract |Vub| using Light-Cone Sum Rules (LCSR) for 0<= q^2<16 GeV^2 and
Lattice QCD (LQCD) for 16 GeV^2 <= q^2 < q^2_max. Combining both intervals
yields |Vub| = (3.24 +- 0.22 +- 0.13 +0.55/-0.39 +- 0.09)x10^{-3}$ for pi l nu,
and |Vub| = (3.00 +- 0.21 +0.29/-0.35 +0.49/-0.38 +-0.28)x10^{-3} for rho l nu,
where the errors are statistical, experimental systematic, theoretical, and
signal form-factor shape, respectively. Our combined value from both decay
modes is |Vub| = (3.17 +- 0.17 +0.16/-0.17 +0.53/-0.39 +-0.03)x10^{-3}.Comment: 45 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Search for CP Violation in D^0--> K_S^0 pi^+pi^-
We report on a search for CP violation in the decay of D0 and D0B to Kshort
pi+pi-. The data come from an integrated luminosity of 9.0 1/fb of e+e-
collisions at sqrt(s) ~ 10 GeV recorded with the CLEO II.V detector. The
resonance substructure of this decay is well described by ten quasi-two-body
decay channels (K*-pi+, K*0(1430)-pi+, K*2(1430)-pi+, K*(1680)-pi+, Kshort rho,
Kshort omega, Kshort f0(980), Kshort f2(1270), Kshort f0(1370), and the ``wrong
sign'' K*+ pi-) plus a small non-resonant component. We observe no evidence for
CP violation in the amplitudes and phases that describe the decay D0 to K_S^0
pi+pi-.Comment: 10 pages, 3 figures, also available at
http://w4.lns.cornell.edu/public/CLNS/, submitted to PR
Measurement of Lepton Momentum Moments in the Decay bar{B} \to X \ell \bar{\nu} and Determination of Heavy Quark Expansion Parameters and |V_cb|
We measure the primary lepton momentum spectrum in B-bar to X l nu decays,
for p_l > 1.5 GeV/c in the B rest frame. From this, we calculate various
moments of the spectrum. In particular, we find R_0 = [int(E_l>1.7)
(dGam/dE_sl)*dE_l] / [int(E_l>1.5) (dGam/dE_sl)*dE_l] = 0.6187 +/- 0.0014_stat
+/- 0.0016_sys and R_1 = [int(E_l>1.5) E_l(dGam/dE_sl)*dE_l] / [int(E_l>1.5)
(dGam/dE_sl)*dE_l] = (1.7810 +/- 0.0007_stat +/- 0.0009_sys) GeV. We use these
moments to determine non-perturbative parameters governing the semileptonic
width. In particular, we extract the Heavy Quark Expansion parameters
Lambda-bar = (0.39 +/- 0.03_stat +/- 0.06_sys +/- 0.12_th) GeV and lambda_1 =
(-0.25 +/- 0.02_stat +/- 0.05_sys +/- 0.14_th) GeV^2. The theoretical
constraints used are evaluated through order 1/M_B^3 in the non-perturbative
expansion and beta_0*alpha__s^2 in the perturbative expansion. We use these
parameters to extract |V_cb| from the world average of the semileptonic width
and find |V_cb| = (40.8 +/- 0.5_Gam-sl +/- 0.4_(lambda_1,Lambda-bar)-exp +/-
0.9_th) x 10^-3. In addition, we extract the short range b-quark mass m_b^1S =
(4.82 +/- 0.07_exp +/- 0.11_th) GeV/c^2. Finally, we discuss the implications
of our measurements for the theoretical understanding of inclusive semileptonic
processes.Comment: 21 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Diagnosis and management of spinal muscular atrophy : Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder due to a defect in the survival motor neuron 1 (SMN1) gene. Its incidence is approximately 1 in 11,000 live births. In 2007, an International Conference on the Standard of Care for SMA published a consensus statement on SMA standard of care that has been widely used throughout the world. Here we report a two-part update of the topics covered in the previous recommendations. In part 1 we present the methods used to achieve these recommendations, and an update on diagnosis, rehabilitation, orthopedic and spinal management; and nutritional, swallowing and gastrointestinal management. Pulmonary management, acute care, other organ involvement, ethical issues, medications, and the impact of new treatments for SMA are discussed in part 2
Polarised quark distributions in the nucleon from semi-inclusive spin asymmetries
We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 1~GeV. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at =10~GeV. The polarised valence quark distribution, , is positive and the polarisation increases with . The polarised valence quark distribution, , is negative and the non-strange sea distribution, , is consistent with zero over the measured range of . We find for the first moments , and , where we assumed . We also determine for the first time the second moments of the valence distributions .We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 1 GeV. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at =10 GeV. The polarised valence quark distribution, , is positive and the polarisation increases with . The polarised valence quark distribution, , is negative and the non-strange sea distribution, , is consistent with zero over the measured range of . We find for the first moments , and , where we assumed . We also determine for the first time the second moments of the valence distributions .We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 1 GeV. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at =10 GeV. The polarised valence quark distribution, , is positive and the polarisation increases with . The polarised valence quark distribution, , is negative and the non-strange sea distribution, , is consistent with zero over the measured range of . We find for the first moments , and , where we assumed . We also determine for the first time the second moments of the valence distributions .We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 1 GeV. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at =10 GeV. The polarised valence quark distribution, , is positive and the polarisation increases with . The polarised valence quark distribution, , is negative and the non-strange sea distribution, , is consistent with zero over the measured range of . We find for the first moments , and , where we assumed . We also determine for the first time the second moments of the valence distributions .We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 1 GeV. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at =10 GeV. The polarised valence quark distribution, , is positive and the polarisation increases with . The polarised valence quark distribution, , is negative and the non-strange sea distribution, , is consistent with zero over the measured range of . We find for the first moments , and , where we assumed . We also determine for the first time the second moments of the valence distributions .We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0031 GeV 2 . Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q 2 =10 GeV 2 . The polarised u valence quark distribution, Îu v ( x ), is positive and the polarisation increases with x . The polarised d valence quark distribution, Îd v ( x ), is negative and the non-strange sea distribution, Î q Ì (x) , is consistent with zero over the measured range of x . We find for the first moments â« 0 1 Îu v (x) d x=0.77±0.10±0.08 , â« 0 1 Îd v (x) d x=â0.52±0.14±0.09 and â« 0 1 Î q Ì (x) d x=0.01±0.04±0.03 , where we assumed Î u Ì (x)=Î d Ì (x) . We also determine for the first time the second moments of the valence distributions â« 0 1 xÎq v (x) d x
First Observation of a Upsilon(1D) State
We present the first evidence for the production of Upsilon(1D) states in the
four-photon cascade, Upsilon(3S)-->gamma chib(2P), chib(2P)-->gamma
Upsilon(1D), Upsilon(1D)-->gamma chib(1P), chib(1P)-->gamma Upsilon(1S),
followed by the Upsilon(1S) annihilation into e+e- or mu+mu-. The signal has a
significance of 10.2 standard deviations. The measured product branching ratio
for these five decays, (2.5+-0.5+-0.5)x10^(-5), is consistent with the
theoretical estimates. The data are dominated by the production of one
Upsilon(1D) state consistent with the J=2 assignment. Its mass is determined to
be (10161.1+-0.6+-1.6) MeV, which is consistent with the predictions from
potential models and lattice QCD calculations.
We also searched for Upsilon(3S)-->gammachib(2P),
chib(2P)-->gammaUpsilon(1D), followed by either Upsilon(1D)-->eta Upsilon(1S)
or Upsilon(1D)-->pi+pi- Upsilon(1S). We find no evidence for such decays and
set upper limits on the product branching ratios.Comment: 12 pages postscript,also available through this
http://w4.lns.cornell.edu/public/CLNS/, submitted to PR
- âŠ