2,030 research outputs found

    Permafrost-carbon mobilization in Beringia caused by deglacial meltwater runoff, sea-level rise and warming

    Get PDF
    During the last deglaciation (18–8 kyr BP), shelf flooding and warming presumably led to a large-scale decomposition of permafrost soils in the mid-to-high latitudes of the Northern Hemisphere. Microbial degradation of old organic matter released from the decomposing permafrost potentially contributed to the deglacial rise in atmospheric CO2 and also to the declining atmospheric radiocarbon contents (Δ14C). The significance of permafrost for the atmospheric carbon pool is not well understood as the timing of the carbon activation is poorly constrained by proxy data. Here, we trace the mobilization of organic matter from permafrost in the Pacific sector of Beringia over the last 22 kyr using mass-accumulation rates and radiocarbon signatures of terrigenous biomarkers in four sediment cores from the Bering Sea and the Northwest Pacific. We find that pronounced reworking and thus the vulnerability of old organic carbon to remineralization commenced during the early deglaciation (~16.8 kyr BP) when meltwater runoff in the Yukon River intensified riverbank erosion of permafrost soils and fluvial discharge. Regional deglaciation in Alaska additionally mobilized significant fractions of fossil, petrogenic organic matter at this time. Permafrost decomposition across Beringia's Pacific sector occurred in two major pulses that match the Bølling-Allerød and Preboreal warm spells and rapidly initiated within centuries. The carbon mobilization likely resulted from massive shelf flooding during meltwater pulses 1A (~14.6 kyr BP) and 1B (~11.5 kyr BP) followed by permafrost thaw in the hinterland. Our findings emphasize that coastal erosion was a major control to rapidly mobilize permafrost carbon along Beringia's Pacific coast at ~14.6 and ~11.5 kyr BP implying that shelf flooding in Beringia may partly explain the centennial-scale rises in atmospheric CO2 at these times. Around 16.5 kyr BP, the mobilization of old terrigenous organic matter caused by meltwater-floods may have additionally contributed to increasing CO2 levels

    Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses

    Get PDF
    Mutants with a defective non-homologous-end-joining (NHEJ) pathway have boosted functional genomics in filamentous fungi as they are very efficient recipient strains for gene-targeting approaches, achieving homologous recombination frequencies up to 100%. For example, deletion of the ku70 homologous gene kusA in Aspergillus niger resulted in a recipient strain in which deletions of essential or non-essential genes can efficiently be obtained. To verify that the mutant phenotype observed is the result of a gene deletion, a complementation approach has to be performed. Here, an intact copy of the gene is transformed back to the mutant, where it should integrate ectopically into the genome. However, ectopic complementation is difficult in NHEJ-deficient strains, and the gene will preferably integrate via homologous recombination at its endogenous locus. To circumvent that problem, we have constructed autonomously replicating vectors useful for many filamentous fungi which contain either the pyrG allele or a hygromycin resistance gene as selectable markers. Under selective conditions, the plasmids are maintained, allowing complementation analyses; once the selective pressure is removed, the plasmid becomes lost and the mutant phenotype prevails. Another disadvantage of NHEJ-defective strains is their increased sensitivity towards DNA damaging conditions such as radiation. Thus, mutant analyses in these genetic backgrounds are limited and can even be obscured by pleiotropic effects. The use of sexual crossings for the restoration of the NHEJ pathway is, however, impossible in imperfect filamentous fungi such as A. niger. We have therefore established a transiently disrupted kusA strain as recipient strain for gene-targeting approaches

    Engineering of Aspergillus niger for the production of secondary metabolites

    Get PDF
    Background: Filamentous fungi can each produce dozens of secondary metabolites which are attractive as therapeutics, drugs, antimicrobials, flavour compounds and other high-value chemicals. Furthermore, they can be used as an expression system for eukaryotic proteins. Application of most fungal secondary metabolites is, however, so far hampered by the lack of suitable fermentation protocols for the producing strain and/or by low product titers. To overcome these limitations, we report here the engineering of the industrial fungus Aspergillus niger to produce high titers (up to 4,500 mg • l-1) of secondary metabolites belonging to the class of nonribosomal peptides. Results: For a proof-of-concept study, we heterologously expressed the 351 kDa nonribosomal peptide synthetase ESYN from Fusarium oxysporum in A. niger. ESYN catalyzes the formation of cyclic depsipeptides of the enniatin family, which exhibit antimicrobial, antiviral and anticancer activities. The encoding gene esyn1 was put under control of a tunable bacterial-fungal hybrid promoter (Tet-on) which was switched on during early-exponential growth phase of A. niger cultures. The enniatins were isolated and purified by means of reverse phase chromatography and their identity and purity proven by tandem MS, NMR spectroscopy and X-ray crystallography. The initial yields of 1 mg • l-1 of enniatin were increased about 950 fold by optimizing feeding conditions and the morphology of A. niger in liquid shake flask cultures. Further yield optimization (about 4.5 fold) was accomplished by cultivating A. niger in 5 l fed batch fermentations. Finally, an autonomous A. niger expression host was established, which was independent from feeding with the enniatin precursor D-2-hydroxyvaleric acid D-Hiv. This was achieved by constitutively expressing a fungal D-Hiv dehydrogenase in the esyn1-expressing A. niger strain, which used the intracellular ɑ-ketovaleric acid pool to generate D-Hiv. Conclusions: This is the first report demonstrating that A. niger is a potent and promising expression host for nonribosomal peptides with titers high enough to become industrially attractive. Application of the Tet-on system in A. niger allows precise control on the timing of product formation, thereby ensuring high yields and purity of the peptides produced.EC/FP7/607332/EU/Quantitative Biology for Fungal Secondary Metabolite Producers/QuantFungDFG, EXC 314, Unifying Concepts in Catalysi

    Cyclophosphamide-Induced Cystitis Increases Bladder CXCR4 Expression and CXCR4-Macrophage Migration Inhibitory Factor Association

    Get PDF
    BACKGROUND: Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine involved in cystitis and a non-cognate ligand of the chemokine receptor CXCR4 in vitro. We studied whether CXCR4-MIF associations occur in rat bladder and the effect of experimental cystitis. METHODS AND FINDINGS: Twenty male rats received saline or cyclophosphamide (40 mg/kg; i.p.; every 3(rd) day) to induce persistent cystitis. After eight days, urine was collected and bladders excised under anesthesia. Bladder CXCR4 and CXCR4-MIF co-localization were examined with immunhistochemistry. ELISA determined MIF and stromal derived factor-1 (SDF-1; cognate ligand for CXCR4) levels. Bladder CXCR4 expression (real-time RTC-PCR) and protein levels (Western blotting) were examined. Co-immunoprecipitations studied MIF-CXCR4 associations.Urothelial basal and intermediate (but not superficial) cells in saline-treated rats contained CXCR4, co-localized with MIF. Cyclophosphamide treatment caused: 1) significant redistribution of CXCR4 immunostaining to all urothelial layers (especially apical surface of superficial cells) and increased bladder CXCR4 expression; 2) increased urine MIF with decreased bladder MIF; 3) increased bladder SDF-1; 4) increased CXCR4-MIF associations. CONCLUSIONS: These data demonstrate CXCR4-MIF associations occur in vivo in rat bladder and increase in experimental cystitis. Thus, CXCR4 represents an alternative pathway for MIF-mediated signal transduction during bladder inflammation. In the bladder, MIF may compete with SDF-1 (cognate ligand) to activate signal transduction mediated by CXCR4

    Classification and Functional Characterization of Vasa Vasorum-Associated Perivascular Progenitor Cells in Human Aorta

    Get PDF
    In the microcirculation, pericytes are believed to function as mesenchymal stromal cells (MSCs). We hypothesized that the vasa vasorum harbor progenitor cells within the adventitia of human aorta. Pericytes, endothelial progenitor cells, and other cell subpopulations were detected among freshly isolated adventitial cells using flow cytometry. Purified cultured pericytes were enriched for the MSC markers CD105 and CD73 and depleted of the endothelial markers von Willebrand factor and CD31. Cultured pericytes were capable of smooth muscle lineage progression including inducible expression of smooth muscle myosin heavy chain, calponin, and α-smooth muscle actin, and adopted a spindle shape. Pericytes formed spheroids when cultured on Matrigel substrates and peripherally localized with branching endothelial cells in vitro. Our results indicate that the vasa vasorum form a progenitor cell niche distinct from other previously described progenitor populations in human adventitia. These findings could have important implications for understanding the complex pathophysiology of human aortic disease
    • …
    corecore