1,356 research outputs found
Plaquette expectation value and lattice free energy of three-dimensional SU(N) gauge theory
We use high precision lattice simulations to calculate the plaquette
expectation value in three-dimensional SU(N) gauge theory for N=2,3,4,5,8.
Using these results, we study the N-dependence of the first non-perturbative
coefficient in the weak-coupling expansion of hot QCD. We demonstrate that, in
the limit of large N, the functional form of the plaquette expectation value
with ultraviolet divergences subtracted is 15.9(2)-44(2)/N^2.Comment: 14 pages, 6 figures. v2: references added; published versio
Regional seasonality of fire size and fire weather conditions across Australia's northern savanna
Australia's northern savannas have among the highest fire frequencies in the world. The climate is monsoonal, with a long, dry season of up to 9 months, during which most fires occur. The Australian Government's Emissions Reduction Fund allows land managers to generate carbon credits by abating the direct emissions of CO2 equivalent gases via prescribed burning that shifts the fire regime from predominantly large, high-intensity late dry season fires to a more benign, early dry season fire regime. However, the Australian savannas are vast and there is significant variation in weather conditions and seasonality, which is likely to result in spatial and temporal variations in the commencement and length of late dry season conditions. Here, we assess the temporal and spatial consistency of the commencement of late dry season conditions, defined as those months that maximise fire size and where the most extreme fire weather conditions exist. The results demonstrate that significant yearly, seasonal and spatial variations in fire size and fire weather conditions exist, both within and between bioregions. The effective start of late dry season conditions, as defined by those months that maximise fire size and where the most extreme fire weather variables exist, is variable across the savannas
On the effective action of confining strings
We study the low-energy effective action on confining strings (in the
fundamental representation) in SU(N) gauge theories in D space-time dimensions.
We write this action in terms of the physical transverse fluctuations of the
string. We show that for any D, the four-derivative terms in the effective
action must exactly match the ones in the Nambu-Goto action, generalizing a
result of Luscher and Weisz for D=3. We then analyze the six-derivative terms,
and we show that some of these terms are constrained. For D=3 this uniquely
determines the effective action for closed strings to this order, while for D>3
one term is not uniquely determined by our considerations. This implies that
for D=3 the energy levels of a closed string of length L agree with the
Nambu-Goto result at least up to order 1/L^5. For any D we find that the
partition function of a long string on a torus is unaffected by the free
coefficient, so it is always equal to the Nambu-Goto partition function up to
six-derivative order. For a closed string of length L, this means that for D>3
its energy can, in principle, deviate from the Nambu-Goto result at order
1/L^5, but such deviations must always cancel in the computation of the
partition function. Next, we compute the effective action up to six-derivative
order for the special case of confining strings in weakly-curved holographic
backgrounds, at one-loop order (leading order in the curvature). Our
computation is general, and applies in particular to backgrounds like the
Witten background, the Maldacena-Nunez background, and the Klebanov-Strassler
background. We show that this effective action obeys all of the constraints we
derive, and in fact it precisely agrees with the Nambu-Goto action (the single
allowed deviation does not appear).Comment: 71 pages, 7 figures. v2: added reference, minor corrections. v3:
removed one term from the effective action since it is trivial. The
conclusions on the corrections to energy levels are unchanged, but the claim
that the holographic computation shows a deviation from Nambu-Goto was
modified. v4: added reference
Properties of the deconfining phase transition in SU(N) gauge theories
We extend our earlier investigation of the finite temperature deconfinement
transition in SU(N) gauge theories, with the emphasis on what happens as N->oo.
We calculate the latent heat in the continuum limit, and find the expected
quadratic in N behaviour at large N. We confirm that the phase transition,
which is second order for SU(2) and weakly first order for SU(3), becomes
robustly first order for N>3 and strengthens as N increases. As an aside, we
explain why the SU(2) specific heat shows no sign of any peak as T is varied
across what is supposedly a second order phase transition. We calculate the
effective string tension and electric gluon masses at T=Tc confirming the
discontinuous nature of the transition for N>2. We explicitly show that the
large-N `spatial' string tension does not vary with T for T<Tc and that it is
discontinuous at T=Tc. For T>Tc it increases as T-squared to a good
approximation, and the k-string tension ratios closely satisfy Casimir Scaling.
Within very small errors, we find a single Tc at which all the k-strings
deconfine, i.e. a step-by-step breaking of the relevant centre symmetry does
not occur. We calculate the interface tension but are unable to distinguish
between linear or quadratic in N variations, each of which can lead to a
striking but different N=oo deconfinement scenario. We remark on the location
of the bulk phase transition, which bounds the range of our large-N
calculations on the strong coupling side, and within whose hysteresis some of
our larger-N calculations are performed.Comment: 50 pages, 14 figure
Thermal compression of atomic hydrogen on helium surface
We describe experiments with spin-polarized atomic hydrogen gas adsorbed on
liquid He surface. The surface gas density is increased locally by
thermal compression up to cm at 110 mK. This
corresponds to the onset of quantum degeneracy with the thermal de-Broglie
wavelength being 1.5 times larger than the mean interatomic spacing. The atoms
were detected directly with a 129 GHz electron-spin resonance spectrometer
probing both the surface and the bulk gas. This, and the simultaneous
measurement of the recombination power, allowed us to make accurate studies of
the adsorption isotherm and the heat removal from the adsorbed hydrogen gas.
From the data, we estimate the thermal contact between 2D hydrogen gas and
phonons of the helium film. We analyze the limitations of the thermal
compression method and the possibility to reach the superfluid transition in 2D
hydrogen gas.Comment: 20 pages, 11 figure
The gauge-string duality and heavy ion collisions
I review at a non-technical level the use of the gauge-string duality to
study aspects of heavy ion collisions, with special emphasis on the trailing
string calculation of heavy quark energy loss. I include some brief
speculations on how variants of the trailing string construction could provide
a toy model of black hole formation and evaporation. This essay is an invited
contribution to "Forty Years of String Theory" and is aimed at philosophers and
historians of science as well as physicists.Comment: 21 page
Time-variability in the Interstellar Boundary Conditions of the Heliosphere: Effect of the Solar Journey on the Galactic Cosmic Ray Flux at Earth
During the solar journey through galactic space, variations in the physical
properties of the surrounding interstellar medium (ISM) modify the heliosphere
and modulate the flux of galactic cosmic rays (GCR) at the surface of the
Earth, with consequences for the terrestrial record of cosmogenic
radionuclides. One phenomenon that needs studying is the effect on cosmogenic
isotope production of changing anomalous cosmic ray fluxes at Earth due to
variable interstellar ionizations. The possible range of interstellar ram
pressures and ionization levels in the low density solar environment generate
dramatically different possible heliosphere configurations, with a wide range
of particle fluxes of interstellar neutrals, their secondary products, and GCRs
arriving at Earth. Simple models of the distribution and densities of ISM in
the downwind direction give cloud transition timescales that can be directly
compared with cosmogenic radionuclide geologic records. Both the interstellar
data and cosmogenic radionuclide data are consistent with cloud transitions
during the Holocene, with large and assumption-dependent uncertainties. The
geomagnetic timeline derived from cosmic ray fluxes at Earth may require
adjustment to account for the disappearance of anomalous cosmic rays when the
Sun is immersed in ionized gas.Comment: Submitted to Space Sciences Review
- …