58 research outputs found

    Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance

    Get PDF
    It is well-established that the nutritional deficiency or inadequacy can impair immune functions. Growing evidence suggests that for certain nutrients increased intake above currently recommended levels may help optimize immune functions including improving defense function and thus resistance to infection, while maintaining tolerance. This review will examine the data representing the research on prominent intervention agents n-3 polyunsaturated fatty acids (PUFA), micronutrients (zinc, vitamins D and E), and functional foods including probiotics and tea components for their immunological effects, working mechanisms, and clinical relevance. Many of these nutritive and non-nutritive food components are related in their functions to maintain or improve immune function including inhibition of pro-inflammatory mediators, promotion of anti-inflammatory functions, modulation of cell-mediated immunity, alteration of antigen-presenting cell functions, and communication between the innate and adaptive immune systems. Both animal and human studies present promising findings suggesting a clinical benefit of vitamin D, n-3 PUFA, and green tea catechin EGCG in autoimmune and inflammatory disorders, and vitamin D, vitamin E, zinc, and probiotics in reduction of infection. However, many studies report divergent and discrepant results/conclusions due to various factors. Chief among them, and thus call for attention, includes more standardized trial designs, better characterized populations, greater consideration for the intervention doses used, and more meaningful outcome measurements chosen

    Life-long consumption of high level of fruits and vegetables reduces tumor incidence and extends median lifespan in mice

    Get PDF
    ObjectiveEpidemiological studies suggest that consumption of fruits and vegetables (FV) is negatively associated with the incidence of certain cancers and mortality. However, a causal relationship has not been demonstrated. Thus, we investigated the effect of life-long consumption of high level of FV on median lifespan, key biological functions, and pathologies in mice fed low-fat (LF) or high-fat (HF) diets and the underlying mechanisms.MethodsUsing a 2 × 2 factorial design, 5 weeks-old male C57BL/6J mice were randomly assigned to one of four groups (n = 60/group): LF (LF-C, 10% kcal fat), HF (HF-C, 45% kcal fat) or each supplemented with 15% (w/w) of a unique FV mixture (LF + FV and HF + FV, respectively). Mice were euthanized when one group reached 50% mortality. Body weight and composition, tumor incidence, and death were monitored. Blood levels of lipids and pro-inflammatory cytokines were assessed.ResultsAfter 21 months of feeding, HF-C group reached 50% mortality, at which time mice in all groups were terminated. HF-C had higher mortality (50.0%) compared to the LF-C group (18.3%, p = 0.0008). Notably, HF-FV had lower mortality (23.3%) compared to HF-C group (p = 0.008); there was no significant difference in mortality between HF-FV and LF-C groups. Tumors were found in all groups, and were predominantly present in the liver, followed by those of lung, intestine, and seminal vesicle. Tumor incidence in the HF-C group (73.3%) was higher than that in LF-C group (30.0%, p < 0.0001). HF + FV group had 23.3% lower tumor incidence compared to the HF-C group (p = 0.014). No significant difference in tumor incidence between the LF-C and LF + FV groups was observed. Long-term FV supplementation reduced systemic inflammation and blood lipids.ConclusionWe provide the first causal evidence that life-long intake of a diet, containing a high level and large variety of FV, decreases tumor incidence and extends median lifespan in mice fed a western-style high-fat diet. These effects of FV are at least in part due to reduced blood levels of pro-inflammatory cytokines and improved dyslipidemia

    Hidden Hunger: Solutions for America’s Aging Populations

    Get PDF
    The global population, including the United States, is experiencing a demographic shift with the proportion of older adults (aged ≥ 65 years) growing faster than any other age group. This demographic group is at higher risk for developing nutrition-related chronic conditions such as heart disease and diabetes as well as infections such as influenza and pneumonia. As a result, an emphasis on nutrition is instrumental for disease risk reduction. Unfortunately, inadequate nutrient status or deficiency, often termed hidden hunger, disproportionately affects older adults because of systematic healthcare, environmental, and biological challenges. This report summarizes the unique nutrition challenges facing the aging population and identifies strategies, interventions, and policies to address hidden hunger among the older adults, discussed at the scientific symposium “Hidden Hunger: Solutions for America’s Aging Population”, on March 23, 2018

    Hidden Hunger:Solutions for America's Aging Populations

    Get PDF
    The global population, including the United States, is experiencing a demographic shift with the proportion of older adults (aged 65 years) growing faster than any other age group. This demographic group is at higher risk for developing nutrition-related chronic conditions such as heart disease and diabetes as well as infections such as influenza and pneumonia. As a result, an emphasis on nutrition is instrumental for disease risk reduction. Unfortunately, inadequate nutrient status or deficiency, often termed hidden hunger, disproportionately affects older adults because of systematic healthcare, environmental, and biological challenges. This report summarizes the unique nutrition challenges facing the aging population and identifies strategies, interventions, and policies to address hidden hunger among the older adults, discussed at the scientific symposium Hidden Hunger: Solutions for America's Aging Population, on March 23, 2018

    The rise, the fall and the renaissance of vitamin E

    No full text
    This review deals with the expectations of vitamin E ability of preventing or curing, as a potent antioxidant, alleged oxidative stress based ailments including cardiovascular disease, cancer, neurodegenerative diseases, cataracts, macular degeneration and more. The results obtained with clinical intervention studies have highly restricted the range of effectiveness of this vitamin. At the same time, new non-antioxidant mechanisms have been proposed. The new functions of vitamin E have been shown to affect cell signal transduction and gene expression, both in vitro and in vivo. Phosphorylation of vitamin E, which takes place in vivo, results in a molecule provided with functions that are in part stronger and in part different from those of the non-phosphorylate compound. The in vivo documented functions of vitamin E preventing the vitamin E deficiency ataxia (AVED), slowing down the progression of non-alcoholic steato-hepatitis (NASH), decreasing inflammation and potentiating the immune response are apparently based on these new molecular mechanisms. It should be stressed however that vitamin E, when present at higher concentrations in the body, should exert antioxidant properties to the extent that its chromanol ring is unprotected or un-esterified
    • …
    corecore