133 research outputs found

    Non-equilibrium magnetic effects at interfaces for ultrafast dynamics (Conference Presentation)

    Get PDF
    Representing the future of spintronics, femtosecond spin current (SC) pulses constitute a versatile tool to transfer spin and control magnetization on the ultrafast timescale. It is therefore of paramount importance to understand the kinetics of these pulses and the fundamentals of their interaction with magnetized media. In our work, we demonstrate the key role of interfaces for the SC dynamics in Fe/Au/Fe multilayers. In particular, we argue that both (i) demagnetization caused by a pulse of hot electrons and (ii) spin transfer torque exerted by the orthogonal to the Fe magnetization projection of magnetic moment delivered by SC pulse are localized in the vicinity of the Fe/Au interface. We analyze both processes in details, showing that the SC-driven excitation of the sub-THz spin wave dynamics in Fe film is enabled by the spatial confinement of the exerted spin transfer torque. Moreover, a pulse of hot electrons leads to the efficient demagnetization of the Fe film. By disentangling the magneto-optical Kerr effect (MOKE) transients we demonstrate the strong spatial non-uniformity of this demagnetization. We argue that simultaneous recording of transient MOKE rotation and ellipticity is crucial for drawing such conclusions. Our findings have a twofold impact: firstly, they illustrate rich opportunities of utilizing SC pulses for manipulation of magnetization in ferromagnets and, secondly, they highlight the importance of spatial localization for understanding the ultrafast spin dynamics in multilayers

    Screening for hypoglycemia at the bedside in the neonatal intensive care unit (NICU) with the Abbott PCx glucose meter

    Get PDF
    BACKGROUND: Point of care (POC) glucose meters are routinely used as a screening tool for hypoglycemia in a neonatal setting. Glucose meters however, lack the same accuracy as laboratory instruments for glucose measurement. In this study we investigated potential reasons for this inaccuracy and established a cut off value for confirmatory testing. METHODS: In this prospective study, all patients in the neonatal intensive care unit who had a plasma glucose test ordered were eligible to participate. Demographic information, sample collection information (nine variables) and a recent hematocrit value were recorded for each sample. Glucose measurements were taken at the bedside on the glucose meter (RN PCx) as well as in the laboratory on both the glucose meter (LAB PCx) and the laboratory analyzer (PG). Data were analyzed by simple and mixed-effects regression analysis and by analysis of a receiver operator characteristics (ROC) curve. RESULTS: There were 475 samples analyzed from 132 patients. RN PCx values were higher than PG values (mean = 4.9%), while LAB PCx results were lower (mean = -5.2%) than PG values. Only 31% of the difference between RN PCx – PG and 46% of the difference for LAB PCx – PG could be accounted for by the variables tested. The largest proportion of variance between PCx and PG measurements was explained by hematocrit (about 30%) with a greater effect seen at glucose concentrations ≤4.0 mmol/L (≤72 mg/dL)(48% and 40% for RN PCx and LAB PCx, respectively). The ROC analysis showed that for detection of all cases of hypoglycemia (PG < 2.6 mmol/L)(PG < 47 mg/dL) the PCx screening cut off value would need to be set at 3.8 mmol/L (68 mg/dL) requiring 20% of all samples to have confirmatory analysis by the laboratory method. CONCLUSION: The large difference between glucose results obtained by PCx glucose meter compared to the laboratory analyzer can be explained in part by hematocrit and low glucose concentration. These results emphasize that the glucose meter is useful only as a screening device for neonatal hypoglycemia and that a screening cut off value must be established

    Nonvirally Modified Autologous Primary Hepatocytes Correct Diabetes and Prevent Target Organ Injury in a Large Preclinical Model

    Get PDF
    BACKGROUND: Current gene- and cell-based therapies have significant limitations which impede widespread clinical application. Taking diabetes mellitus as a paradigm, we have sought to overcome these limitations by ex vivo electrotransfer of a nonviral insulin expression vector into primary hepatocytes followed by immediate autologous reimplantation in a preclinical model of diabetes. METHODS AND RESULTS: In a single 3-hour procedure, hepatocytes were isolated from a surgically resected liver wedge, electroporated with an insulin expression plasmid ex vivo and reimplanted intraparenchymally under ultrasonic guidance into the liver in each of 10 streptozotocin-induced diabetic Yorkshire pigs. The vector was comprised of a bifunctional, glucose-responsive promoter linked to human insulin cDNA. Ambient glucose concentrations appropriately altered human insulin mRNA expression and C-peptide secretion within minutes in vitro and in vivo. Treated swine showed correction of hyperglycemia, glucose intolerance, dyslipidemia and other metabolic abnormalities for > or = 47 weeks. Metabolic correction correlated significantly with the number of hepatocytes implanted. Importantly, we observed no hypoglycemia even under fasting conditions. Direct intrahepatic implantation of hepatocytes did not alter biochemical indices of liver function or induce abnormal hepatic lobular architecture. About 70% of implanted hepatocytes functionally engrafted, appeared histologically normal, retained vector DNA and expressed human insulin for > or = 47 weeks. Based on structural tissue analyses and transcriptome data, we showed that early correction of diabetes attenuated and even prevented pathological changes in the eye, kidney, liver and aorta. CONCLUSIONS: We demonstrate that autologous hepatocytes can be efficiently, simply and safely modified by electroporation of a nonviral vector to express, process and secrete insulin durably. This strategy, which achieved significant and sustained therapeutic efficacy in a large preclinical model without adverse effects, warrants consideration for clinical development especially as it could have broader future applications for the treatment of other acquired and inherited diseases for which systemic reconstitution of a specific protein deficiency is critical

    Achieving the "triple aim" for inborn errors of metabolism: a review of challenges to outcomes research and presentation of a new practice-based evidence framework

    Get PDF
    Across all areas of health care, decision makers are in pursuit of what Berwick and colleagues have called the “triple aim”: improving patient experiences with care, improving health outcomes, and managing health system impacts. This is challenging in a rare disease context, as exemplified by inborn errors of metabolism. There is a need for evaluative outcomes research to support effective and appropriate care for inborn errors of metabolism. We suggest that such research should consider interventions at both the level of the health system (e.g., early detection through newborn screening, programs to provide access to treatments) and the level of individual patient care (e.g., orphan drugs, medical foods). We have developed a practice- based evidence framework to guide outcomes research for inborn errors of metabolism. Focusing on outcomes across the triple aim, this framework integrates three priority themes: tailoring care in the context of clinical heterogeneity; a shift from “urgent care” to “opportunity for improvement”; and the need to evaluate the comparative effectiveness of emerging and established therapies. Guided by the framework, a new Canadian research network has been established to generate knowledge that will inform the design and delivery of health services for patients with inborn errors of metabolism and other rare diseases.This work was supported by a CIHR Emerging Team Grant (“Emerging team in rare diseases: acheiving the ‘triple aim’ for inborn errors of metabolism,” B.K. Potter, P. Chakraborty, and colleagues, 2012– 2017, grant no. TR3–119195). Current investigators and collaborators in the Canadian Inherited Metabolic Diseases Research Network are: B.K. Potter, P. Chakraborty, J. Kronick, D. Coyle, K. Wilson, M. Brownell, R. Casey, A. Chan, S. Dyack, L. Dodds, A. Feigenbaum, D. Fell, M. Geraghty, C. Greenberg, S. Grosse, A. Guttmann, A. Khan, J. Little, B. Maranda, J. MacKenzie, A. Mhanni, F. Miller, G. Mitchell, J. Mitchell, M. Nakhla, M. Potter, C. Prasad, K. Siriwardena, K.N. Speechley, S. Stocker, L. Turner, H. Vallance, and B.J. Wilson. Members of our external advisory board are D. Bidulka, T. Caulfield, J.T.R. Clarke, C. Doiron, K. El Emam, J. Evans, A. Kemper, W. McCormack, and A. Stephenson Julian. J. Little is supported by a Canada Research Chair in Human Genome Epidemiology. K. Wilson is supported by a Canada Research Chair in Public Health Policy

    Lesser Spotted EagleAquila pomarina as an alpine hunter in the Caucasus

    No full text
    corecore