45 research outputs found

    Factors Influencing Nutritional Intake and Interests in Educational Content of Athletes and Sport Professionals Toward the Development of a Clinician-Supported Mobile App to Combat Relative Energy Deficiency in Sport: Formative Research and a Description of App Functions

    Get PDF
    Background: Relative energy deficiency in sport (RED-S) as a consequence of athlete malnutrition remains a prominent issue. However, it remains underrecognized, in part due to the perceived outward health of athletes. The Eat2Win app was designed to combat RED-S and athlete malnutrition by providing education, behavior modification, and direct communication with expert sports dietitians to athletes and sport professionals (professionals who work with athletes, eg, sport coaches and athletic trainers). Objective: The purpose of this formative research was to gain critical insight on motivators and barriers to optimal nutritional intake from both the athletes’ and sport professionals’ perspectives. Additionally, since these 2 groups represent the primary end users of an app aimed at improving athlete nutrition and reducing the risk of RED-S, a secondary objective was to gain insight on the preferences and perceptions of app-based educational content and functionality. Methods: An electronic survey was developed by an interdisciplinary team of experts. Survey questions were established based upon prevailing literature, professional dietetic field experience, and app design considerations to obtain respondent knowledge on key sports nutrition topics along with motivations and barriers to meal choices. Additionally, the survey included questions about the development of an integrative, clinician-support app aimed at addressing RED-S. These questions included preferences for educational content, modes of in-app information, and communication delivery for the target population (app end users: athletes and sport professionals). The survey was distributed through Research Electronic Data Capture (REDCap) to athletes and sport professionals using targeted email, social media, and community engagement campaigns. The electronic survey was available from May 4 to August 2, 2022. Results: Survey respondents (n=1352) included athletes and professionals who work with athletes from a variety of settings, like high school, collegiate, professional, and club sports. Respondents reported high interest in 8 core sports nutrition topics. The preferred modes of information and communication delivery were visual formats (eg, videos and infographics) and in-app alerts (eg, direct messaging and meal reminders). Only athlete respondents were asked about motivators and barriers that influence meal choices. “Health” and “sports performance” were the highest scoring motivators, while the highest scoring barriers were “cost of food,” “easy access to unhealthy food,” and “time to cook or prepare food.” Notably, survey respondents provided positive feedback and interest using a novel function of the app: real-time meal feedback through food photography. Conclusions: The Eat2Win app is designed to combat RED-S and athlete malnutrition. Results from this study provide critical information on end-user opinions and preferences and will be used to further develop the Eat2Win app. Future research will aim to determine whether the Eat2Win app can prevent RED-S and the risk of athlete malnutrition to improve both health and performance

    Circulating Soluble RAGE Isoforms are Attenuated in Obese, Impaired Glucose Tolerant Individuals and are Associated with the Development of Type 2 Diabetes

    Get PDF
    The soluble receptor for advanced glycation end products (sRAGE) may be protective against inflammation associated with obesity and type 2 diabetes (T2DM). The aim of this study was to determine the distribution of sRAGE isoforms and whether sRAGE isoforms are associated with risk of T2DM development in subjects spanning the glucose tolerance continuum. In this retrospective analysis, circulating total sRAGE and endogenous secretory RAGE (esRAGE) were quantified via ELISA, and cleaved RAGE (cRAGE) was calculated in 274 individuals stratified by glucose tolerance status (GTS) and obesity. Group differences were probed by ANOVA, and multivariate ordinal logistic regression was used to test the association between sRAGE isoform concentrations and the proportional odds of developing diabetes, vs. normal glucose tolerance (NGT) or impaired glucose tolerance (IGT). When stratified by GTS, total sRAGE, cRAGE, and esRAGE were all lower with IGT and T2DM, while the ratio of cRAGE to esRAGE (cRAGE:esRAGE) was only lower ( P &lt; 0.01) with T2DM compared with NGT. When stratified by GTS and obesity, cRAGE:esRAGE was higher with obesity and lower with IGT ( P &lt; 0.0001) compared with lean, NGT. In ordinal logistic regression models, greater total sRAGE (odds ratio, 0.91; P &lt; 0.01) and cRAGE (odds ratio, 0.84; P &lt; 0.01) were associated with lower proportional odds of developing T2DM. Reduced values of sRAGE isoforms observed with both obesity and IGT are independently associated with greater proportional odds of developing T2DM. The mechanisms by which each respective isoform contributes to obesity and insulin resistance may reveal novel treatment strategies for diabetes. </jats:p

    Retardation of arsenic transport through a Pleistocene aquifer

    Get PDF
    Groundwater drawn daily from shallow alluvial sands by millions of wells over large areas of south and southeast Asia exposes an estimated population of over a hundred million people to toxic levels of arsenic1. Holocene aquifers are the source of widespread arsenic poisoning across the region2, 3. In contrast, Pleistocene sands deposited in this region more than 12,000 years ago mostly do not host groundwater with high levels of arsenic. Pleistocene aquifers are increasingly used as a safe source of drinking water4 and it is therefore important to understand under what conditions low levels of arsenic can be maintained. Here we reconstruct the initial phase of contamination of a Pleistocene aquifer near Hanoi, Vietnam. We demonstrate that changes in groundwater flow conditions and the redox state of the aquifer sands induced by groundwater pumping caused the lateral intrusion of arsenic contamination more than 120 metres from a Holocene aquifer into a previously uncontaminated Pleistocene aquifer. We also find that arsenic adsorbs onto the aquifer sands and that there is a 16–20-fold retardation in the extent of the contamination relative to the reconstructed lateral movement of groundwater over the same period. Our findings suggest that arsenic contamination of Pleistocene aquifers in south and southeast Asia as a consequence of increasing levels of groundwater pumping may have been delayed by the retardation of arsenic transport.National Science Foundation (U.S.) (NSF grant EAR09-11557)Swiss Agency for Development and Cooperation (Grant NAFOSTED 105-09-59-09 to CETASD, the Centre for Environmental Technology and Sustainable Development (Vietnam))National Institute of Environmental Health Sciences (NIEHS grant P42 ES010349)National Institute of Environmental Health Sciences (NIEHS grant P42 ES016454

    Consistent improvement with eculizumab across muscle groups in myasthenia gravis

    Get PDF

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension

    The Role of Nutrition in Mitigating the Effects of COVID-19 from Infection through PASC

    No full text
    The expansive and rapid spread of the SARS-CoV-2 virus has resulted in a global pandemic of COVID-19 infection and disease. Though initially perceived to be acute in nature, many patients report persistent and recurrent symptoms beyond the infectious period. Emerging as a new epidemic, &ldquo;long-COVID&rdquo;, or post-acute sequelae of coronavirus disease (PASC), has substantially altered the lives of millions of people globally. Symptoms of both COVID-19 and PASC are individual, but share commonality to established respiratory viruses, which include but are not limited to chest pain, shortness of breath, fatigue, along with adverse metabolic and pulmonary health effects. Nutrition plays a critical role in immune function and metabolic health and thus is implicated in reducing risk or severity of symptoms for both COVID-19 and PASC. However, despite the impact of nutrition on these key physiological functions related to COVID-19 and PASC, the precise role of nutrition in COVID-19 infection and PASC onset or severity remains to be elucidated. This narrative review will discuss established and emerging nutrition approaches that may play a role in COVID-19 and PASC, with references to the established nutrition and clinical practice guidelines that should remain the primary resources for patients and practitioners

    Skeletal muscle Nur77 and NOR1 insulin responsiveness is blunted in obesity and type 2 diabetes but improved after exercise training

    No full text
    Abstract Obesity and type 2 diabetes (T2DM) are characterized by a blunted metabolic response to insulin, and strongly manifests in skeletal muscle insulin resistance. The orphan nuclear receptors, Nur77 and NOR1, regulate insulin‐stimulated nutrient metabolism where Nur77 and NOR1 gene expression is increased with acute aerobic exercise and acute insulin stimulation. Whether Nur77 or NOR1 are associated with the insulin‐sensitizing effects of chronic aerobic exercise training has yet to be elucidated. Fourteen lean healthy controls (LHC), 12 obese (OB), and 10 T2DM individuals (T2DM) underwent hyperinsulinemic‐euglycemic clamps with skeletal muscle biopsies. Muscle was analyzed for Nur77 and NOR1 gene and protein expression at basal and insulin‐stimulated conditions. Furthermore, a subcohort of 18 participants (OB, n = 12; T2DM, n = 6) underwent a 12‐week aerobic exercise intervention (85% HRmax, 60 min/day, 5 days/week). In response to insulin infusion, LHC increased protein expression of Nur77 (8.7 ± 3.2‐fold) and NOR1 (3.6 ± 1.1‐fold), whereas OB and T2DM remained unaffected. Clamp‐derived glucose disposal rates correlated with Nur77 (r2 = 0.14) and NOR1 (r2 = 0.12) protein expression responses to insulin, whereas age (Nur77: r2 = 0.22; NOR1: r2 = 0.25) and BMI (Nur77: r2 = 0.22; NOR1: r2 = 0.42) showed inverse correlations, corroborating preclinical data. In the intervention cohort, exercise improved Nur77 protein expression in response to insulin (PRE: −1.2 ± 0.3%, POST: 6.2 ± 1.5%). Also, insulin treatment of primary human skeletal muscle cells increased Nur77 and NOR1 protein. These findings highlight the multifactorial nature of insulin resistance in human obesity and T2DM. Understanding the regulation of Nur77 and NOR1 in skeletal muscle and other insulin‐sensitive tissues will create opportunities to advance therapies for T2DM
    corecore