132 research outputs found
Radiative properties of a linear chain of coupled qubits
We calculate the radiative properties for a linear dipole-coupled chain of
qubits. Using the explicit energy eigenstates of the system, we find the
radiation patterns for spontaneous transitions from the one-photon eigenstates
to the ground state of the system. We show that depending on the excitation of
a specific atom, the radiation tends to be focused either along or
perpendicular to the chain. We conclude with a derivation of the total decay
rate of the one-photon eigenstates, and find the interesting result that for
systems where the photon wavenumber is not much larger than the interatomic
spacing, up to 94% of the eigenstates are subradiant, that is, they decay
significantly slower than a single atom in isolation.Comment: 20 pages, 11 figure
The characteristic polynomial of the next-nearest-neighbour qubit chain for single excitations
The characteristic polynomial for a chain of dipole-dipole coupled two-level
atoms with nearest-neighbour and next-nearest-neighbour interactions is
developed for the study of eigenvalues and eigenvectors for single-photon
excitations. We find the exact form of the polynomial in terms of the Chebyshev
polynomials of the second kind that is valid for an arbitrary number of atoms
and coupling strengths. We then propose a technique for expressing the roots of
the polynomial as a power series in the coupling constants. The general
properties of the solutions are also explored, to shed some light on the
general properties that the exact, analytic form of the energy eigenvalues
should have. A method for deriving the eigenvectors of the Hamiltonian is also
outlined.Comment: 19 pages, 8 figures; minor correction
Collective Light Emission of a Finite Size Atomic Chain
Radiative properties of collective electronic states in a one dimensional
atomic chain are investigated. Radiative corrections are included with
emphasize put on the effect of the chain size through the dependence on both
the number of atoms and the lattice constant. The damping rates of collective
states are calculated in considering radiative effects for different values of
the lattice constant relative to the atomic transition wave length. Especially
the symmetric state damping rate as a function of the number of the atoms is
derived. The emission pattern off a finite linear chain is also presented. The
results can be adopted for any chain of active material, e.g., a chain of
semiconductor quantum dots or organic molecules on a linear matrix.Comment: 10 pages, 20 figure
On osp(2|2) conformal field theories
We study the conformal field theories corresponding to current superalgebras
and . We construct the free field
realizations, screen currents and primary fields of these current superalgebras
at general level . All the results for are new, and the
results for the primary fields of also seem to be new. Our
results are expected to be useful in the supersymmetric approach to Gaussian
disordered systems such as random bond Ising model and Dirac model.Comment: LaTex file 20 pages; Title changed and modifications mad
Cohort comparison study of cardiac disease and atherosclerotic burden in type 2 diabetic adults using whole body cardiovascular magnetic resonance imaging
BACKGROUND: Whole body cardiovascular MR (WB CVMR) combines whole body angiography and cardiac MR assessment. It is accepted that there is a high disease burden in patients with diabetes, however the quantification of the whole body atheroma burden in both arterial and cardiac disease has not been previously reported. In this study we compare the quantified atheroma burden in those individuals with and without diabetes by clinical cardiovascular disease (CVD) status. METHODS: 158 participants underwent WB CVMR, and were categorised into one of four groups: (1) type 2 diabetes mellitus (T2DM) with CVD; (2) T2DM without CVD; (3) CVD without T2DM; (4) healthy controls. The arterial tree was subdivided into 31 segments and each scored according to the degree of stenosis. From this a standardised atheroma score (SAS) was calculated. Cardiac MR and late gadolinium enhancement images of the left ventricle were obtained for assessment of mass, volume and myocardial scar assessment. RESULTS: 148 participants completed the study protocol—61 % male, with mean age of 64 ± 8.2 years. SAS was highest in those with cardiovascular disease without diabetes [10.1 (0–39.5)], followed by those with T2DM and CVD [4 (0–41.1)], then those with T2DM only [3.23 (0–19.4)] with healthy controls having the lowest atheroma score [2.4 (0–19.4)]. Both groups with a prior history of CVD had a higher SAS and left ventricular mass than those without (p < 0.001 for both). However after accounting for known cardiovascular risk factors, only the SAS in the group with CVD without T2DM remained significantly elevated. 6 % of the T2DM group had evidence of silent myocardial infarct, with this subcohort having a higher SAS than the remainder of the T2DM group [7.7 (4–19) vs. 2.8 (0–17), p = 0.024]. CONCLUSIONS: Global atheroma burden was significantly higher in those with known cardiovascular disease and without diabetes but not in those with diabetes and cardiovascular disease suggesting that cardiovascular events may occur at a lower atheroma burden in diabetes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12933-015-0284-2) contains supplementary material, which is available to authorized users
Distinct cardioprotective mechanisms of immediate, early and delayed ischaemic postconditioning
Cardioprotection against ischaemia/reperfusion injury in mice can be achieved by delayed ischaemic postconditioning (IPost) applied as late as 30 min after the onset of reperfusion. We determined the efficacy of delayed IPost in a rat model of myocardial infarction (MI) and investigated potential underlying mechanisms of this phenomenon. Rats were subjected to 20, 30 or 45 min of coronary artery occlusion followed by 120 min of reperfusion (I/R). Immediate and early IPost included six cycles of I/R (10/10 s) applied 10 s or 10 min after reperfusion onset. In the second series of experiments, the rats were subjected to 30 min of coronary occlusion followed by IPost applied 10 s, 10, 30, 45 or 60 min after the onset of reperfusion. Immediate and early IPost (applied 10 s or 10 min of reperfusion) established cardioprotection only when applied after a period of myocardial ischaemia lasting 30 min. Delayed IPost applied after 30 or 45 min of reperfusion reduced infarct sizes by 36 and 41 %, respectively (both P < 0.01). IPost applied 60 min after reperfusion onset was ineffective. Inhibition of RISK pathway (administration of ERK1/2 inhibitor PD-98059 or PI3K inhibitor LY-294002) abolished cardioprotection established by immediate IPost but had no effect on cardioprotection conferred by early IPost. Blockade of SAFE pathway using JAK/STAT inhibitor AG490 had no effect on the immediate or early IPost cardioprotection. Blockade of mitochondrial KATP (mitoKATP) channels (with 5-Hydroxydecanoate) abolished cardioprotection achieved by immediate and early IPost, but had no effect on cardioprotection when IPost was applied 30 or 45 min into the reperfusion period. Immediate IPost increased phosphorylation of PI3K-AKT and ERK1/2. Early or delayed IPost had no effect on phosphorylation of PI3K-AKT, ERK1/2 or STAT3. These data show that in the rat model, delayed IPost confers significant cardioprotection even if applied 45 min after onset of reperfusion. Cardioprotection induced by immediate and early postconditioning involves recruitment of RISK pathway and/or mitoKATP channels, while delayed postconditioning appears to rely on a different mechanism
Phosphomimetic Modulation of eNOS Improves Myocardial Reperfusion and Mimics Cardiac Postconditioning in Mice
Objective:
Myocardial infarction resulting from ischemia-reperfusion injury can be reduced by cardiac postconditioning, in which blood flow is restored intermittently prior to full reperfusion. Although key molecular mechanisms and prosurvival pathways involved in postconditioning have been identified, a direct role for eNOS-derived NO in improving regional myocardial perfusion has not been shown. The objective of this study is to measure, with high temporal and spatial resolution, regional myocardial perfusion during ischemia-reperfusion and postconditioning, in order to determine the contribution of regional blood flow effects of NO to infarct size and protection.
Methods and Results:
We used myocardial contrast echocardiography to measure regional myocardial blood flow in mice over time. Reperfusion after myocardial ischemia-reperfusion injury is improved by postconditioning, as well as by phosphomimetic eNOS modulation. Knock-in mice expressing a phosphomimetic S1176D form of eNOS showed improved myocardial reperfusion and significantly reduced infarct size. eNOS knock-out mice failed to show cardioprotection from postconditioning. The size of the no-reflow zone following ischemia-reperfusion is substantially reduced by postconditioning and by the phosphomimetic eNOS mutation.
Conclusions and Significance:
Using myocardial contrast echocardiography, we show that temporal dynamics of regional myocardial perfusion restoration contribute to reduced infarct size after postconditioning. eNOS has direct effects on myocardial blood flow following ischemia-reperfusion, with reduction in the size of the no-reflow zone. These results have important implications for ongoing clinical trials on cardioprotection, because the degree of protective benefit may be significantly influenced by the regional hemodynamic effects of eNOS-derived NO.American Heart Association (Predoctoral Fellowship)National Institutes of Health (U.S.) (R01 NS33335)National Institutes of Health (U.S.) (R01 HL57818
The CLIMATE schools combined study: a cluster randomised controlled trial of a universal Internet-based prevention program for youth substance misuse, depression and anxiety
Background: Anxiety, depressive and substance use disorders account for three quarters of the disability attributed to mental disorders and frequently co-occur. While programs for the prevention and reduction of symptoms associated with (i) substance use and (ii) mental health disorders exist, research is yet to determine if a combined approach is more effective. This paper describes the study protocol of a cluster randomised controlled trial to evaluate the effectiveness of the CLIMATE Schools Combined intervention, a universal approach to preventing substance use and mental health problems among adolescents. Methods/design: Participants will consist of approximately 8400 students aged 13 to 14-years-old from 84 secondary schools in New South Wales, Western Australia and Queensland, Australia. The schools will be cluster randomised to one of four groups; (i) CLIMATE Schools Combined intervention; (ii) CLIMATE Schools - Substance Use; (iii) CLIMATE Schools - Mental Health, or (iv) Control (Health and Physical Education as usual). The primary outcomes of the trial will be the uptake and harmful use of alcohol and other drugs, mental health symptomatology and anxiety, depression and substance use knowledge. Secondary outcomes include substance use related harms, self-efficacy to resist peer pressure, general disability, and truancy. The link between personality and substance use will also be examined.Discussion: Compared to students who receive the universal CLIMATE Schools - Substance Use, or CLIMATE Schools - Mental Health or the Control condition (who received usual Health and Physical Education), we expect students who receive the CLIMATE Schools Combined intervention to show greater delays to the initiation of substance use, reductions in substance use and mental health symptoms, and increased substance use and mental health knowledge
In vivo MRI and ex vivo histological assessment of the cardioprotection induced by ischemic preconditioning, postconditioning and remote conditioning in a closed-chest porcine model of reperfused acute myocardial infarction: importance of microvasculature
BACKGROUND: Cardioprotective value of ischemic post- (IPostC), remote (RIC) conditioning in acute myocardial infarction (AMI) is unclear in clinical trials. To evaluate cardioprotection, most translational animal studies and clinical trials utilize necrotic tissue referred to the area at risk (AAR) by magnetic resonance imaging (MRI). However, determination of AAR by MRI' may not be accurate, since MRI-indices of microvascular damage, i.e., myocardial edema and microvascular obstruction (MVO), may be affected by cardioprotection independently from myocardial necrosis. Therefore, we assessed the effect of IPostC, RIC conditioning and ischemic preconditioning (IPreC; positive control) on myocardial necrosis, edema and MVO in a clinically relevant, closed-chest pig model of AMI. METHODS AND RESULTS: Acute myocardial infarction was induced by a 90-min balloon occlusion of the left anterior descending coronary artery (LAD) in domestic juvenile female pigs. IPostC (6 x 30 s ischemia/reperfusion after 90-min occlusion) and RIC (4 x 5 min hind limb ischemia/reperfusion during 90-min LAD occlusion) did not reduce myocardial necrosis as assessed by late gadolinium enhancement 3 days after reperfusion and by ex vivo triphenyltetrazolium chloride staining 3 h after reperfusion, however, the positive control, IPreC (3 x 5 min ischemia/reperfusion before 90-min LAD occlusion) did. IPostC and RIC attenuated myocardial edema as measured by cardiac T2-weighted MRI 3 days after reperfusion, however, AAR measured by Evans blue staining was not different among groups, which confirms that myocardial edema is not a measure of AAR, IPostC and IPreC but not RIC decreased MVO. CONCLUSION: We conclude that IPostC and RIC interventions may protect the coronary microvasculature even without reducing myocardial necrosis
- …