6 research outputs found

    Candidate gene family-based and case-control studies of susceptibility to high Schistosoma mansoni worm burden in African children: a protocol

    Get PDF
    Background: Approximately 25% of the risk of Schistosoma mansoni is associated with host genetic variation. We will test 24 candidate genes, mainly in the Th2 and Th17 pathways, for association with S. mansoni infection intensity in four African countries, using family based and case-control approaches. Methods: Children aged 5-15 years will be recruited in S. mansoni endemic areas of Ivory Coast, Cameroon, Uganda and the Democratic Republic of Congo (DRC). We will use family based (study 1) and case-control (study 2) designs. Study 1 will take place in Ivory Coast, Cameroon, Uganda and the DRC. We aim to recruit 100 high worm burden families from each country except Uganda, where a previous study recruited at least 40 families. For phenotyping, cases will be defined as the 20% of children in each community with heaviest worm burdens as measured by the circulating cathodic antigen (CCA) assay. Study 2 will take place in Uganda. We will recruit 500 children in a highly endemic community. For phenotyping, cases will be defined as the 20% of children with heaviest worm burdens as measured by the CAA assay, while controls will be the 20% of infected children with the lightest worm burdens. Deoxyribonucleic acid (DNA) will be genotyped on the Illumina H3Africa SNP (single nucleotide polymorphisms) chip and genotypes will be converted to sets of haplotypes that span the gene region for analysis. We have selected 24 genes for genotyping that are mainly in the Th2 and Th17 pathways and that have variants that have been demonstrated to be or could be associated with Schistosoma infection intensity. Analysis: In the family-based design, we will identify SNP haplotypes disproportionately transmitted to children with high worm burden. Case-control analysis will detect overrepresentation of haplotypes in extreme phenotypes with correction for relatedness by using whole genome principal components

    The Genetics of Human Schistosomiasis Infection Intensity and Liver Disease: A Review.

    Get PDF
    Schistosomiasis remains the fourth most prevalent parasitic disease affecting over 200 million people worldwide. Control efforts have focussed on the disruption of the life cycle targeting the parasite, vector and human host. Parasite burdens are highly skewed, and the majority of eggs are shed into the environment by a minority of the infected population. Most morbidity results from hepatic fibrosis leading to portal hypertension and is not well-correlated with worm burden. Genetics as well as environmental factors may play a role in these skewed distributions and understanding the genetic risk factors for intensity of infection and morbidity may help improve control measures. In this review, we focus on how genetic factors may influence parasite load, hepatic fibrosis and portal hypertension. We found 28 studies on the genetics of human infection and 20 studies on the genetics of pathology in humans. S. mansoni and S. haematobium infection intensity have been showed to be controlled by a major quantitative trait locus SM1, on chromosome 5q31-q33 containing several genes involved in the Th2 immune response, and three other loci of smaller effect on chromosomes 1, 6, and 7. The most common pathology associated with schistosomiasis is hepatic and portal vein fibroses and the SM2 quantitative trait locus on chromosome six has been linked to intensity of fibrosis. Although there has been an emphasis on Th2 cytokines in candidate gene studies, we found that four of the five QTL regions contain Th17 pathway genes that have been included in schistosomiasis studies: IL17B and IL12B in SM1, IL17A and IL17F in 6p21-q2, IL6R in 1p21-q23 and IL22RA2 in SM2. The Th17 pathway is known to be involved in response to schistosome infection and hepatic fibrosis but variants in this pathway have not been tested for any effect on the regulation of these phenotypes. These should be priorities for future studies

    Candidate gene family-based and case-control studies of susceptibility to high Schistosoma mansoni worm burden in African children: a protocol.

    Get PDF
    Background: Approximately 25% of the risk of Schistosoma mansoni is associated with host genetic variation. We will test 24 candidate genes, mainly in the T h2 and T h17 pathways, for association with S. mansoni infection intensity in four African countries, using family based and case-control approaches. Methods: Children aged 5-15 years will be recruited in S. mansoni endemic areas of Ivory Coast, Cameroon, Uganda and the Democratic Republic of Congo (DRC). We will use family based (study 1) and case-control (study 2) designs. Study 1 will take place in Ivory Coast, Cameroon, Uganda and the DRC. We aim to recruit 100 high worm burden families from each country except Uganda, where a previous study recruited at least 40 families. For phenotyping, cases will be defined as the 20% of children in each community with heaviest worm burdens as measured by the circulating cathodic antigen (CCA) assay. Study 2 will take place in Uganda. We will recruit 500 children in a highly endemic community. For phenotyping, cases will be defined as the 20% of children with heaviest worm burdens as measured by the CAA assay, while controls will be the 20% of infected children with the lightest worm burdens. Deoxyribonucleic acid (DNA) will be genotyped on the Illumina H3Africa SNP (single nucleotide polymorphisms) chip and genotypes will be converted to sets of haplotypes that span the gene region for analysis. We have selected 24 genes for genotyping that are mainly in the Th2 and Th17 pathways and that have variants that have been demonstrated to be or could be associated with Schistosoma infection intensity.   Analysis: In the family-based design, we will identify SNP haplotypes disproportionately transmitted to children with high worm burden. Case-control analysis will detect overrepresentation of haplotypes in extreme phenotypes with correction for relatedness by using whole genome principal components

    Candidate gene family-based and case-control studies of susceptibility to high Schistosoma mansoni worm burden in African children: a protocol.

    Get PDF
    Background: Approximately 25% of the risk of Schistosoma mansoni is associated with host genetic variation. We will test 24 candidate genes, mainly in the T h2 and T h17 pathways, for association with S. mansoni infection intensity in four African countries, using family based and case-control approaches. Methods: Children aged 5-15 years will be recruited in S. mansoni endemic areas of Ivory Coast, Cameroon, Uganda and the Democratic Republic of Congo (DRC). We will use family based (study 1) and case-control (study 2) designs. Study 1 will take place in Ivory Coast, Cameroon, Uganda and the DRC. We aim to recruit 100 high worm burden families from each country except Uganda, where a previous study recruited at least 40 families. For phenotyping, cases will be defined as the 20% of children in each community with heaviest worm burdens as measured by the circulating cathodic antigen (CCA) assay. Study 2 will take place in Uganda. We will recruit 500 children in a highly endemic community. For phenotyping, cases will be defined as the 20% of children with heaviest worm burdens as measured by the CAA assay, while controls will be the 20% of infected children with the lightest worm burdens. Deoxyribonucleic acid (DNA) will be genotyped on the Illumina H3Africa SNP (single nucleotide polymorphisms) chip and genotypes will be converted to sets of haplotypes that span the gene region for analysis. We have selected 24 genes for genotyping that are mainly in the Th2 and Th17 pathways and that have variants that have been demonstrated to be or could be associated with Schistosoma infection intensity.   Analysis: In the family-based design, we will identify SNP haplotypes disproportionately transmitted to children with high worm burden. Case-control analysis will detect overrepresentation of haplotypes in extreme phenotypes with correction for relatedness by using whole genome principal components

    Association between polymorphisms of IL4, IL13, IL10, STAT6 and IFNG genes, cytokines and immunoglobulin E levels with high burden of Schistosoma mansoni in children from schistosomiasis endemic areas of Cameroon.

    Get PDF
    Eliminating schistosomiasis as a public health problem by 2030 requires a better understanding of the disease transmission, especially the asymmetric distribution of worm burden in individuals living and sharing the same environment. It is in this light that this study was designed to identify human genetic determinants associated with high burden of S. mansoni and also with the plasma concentrations of IgE and four cytokines in children from two schistosomiasis endemic areas of Cameroon. In school-aged children of schistosomiasis endemic areas of Makenene and Nom-Kandi of Cameroon, S. mansoni infections and their infection intensities were evaluated in urine and stool samples using respectively the Point-of-care Circulating Cathodic Antigen test (POC-CCA) and the Kato Katz (KK) test. Thereafter, blood samples were collected in children harbouring high burden of schistosome infections as well as in their parents and siblings. DNA extracts and plasma were obtained from blood. Polymorphisms at 14 loci of five genes were assessed using PCR-restriction fragment length polymorphism and amplification-refractory mutation system. The ELISA test enabled to determine the plasma concentrations of IgE, IL-13, IL-10, IL-4 and IFN-γ. The prevalence of S. mansoni infections was significantly higher (P < 0.0001 for POC-CCA; P = 0.001 for KK) in Makenene (48.6% for POC-CCA and 7.9% for KK) compared to Nom-Kandi (31% for POC-CCA and 4.3% for KK). The infection intensities were also higher (P < 0.0001 for POC-CCA; P = 0.001 for KK) in children from Makenene than those from Nom-Kandi. The allele C of SNP rs3024974 of STAT6 was associated with an increased risk of bearing high burden of S. mansoni both in the additive (p = 0.009) and recessive model (p = 0.01) while the allele C of SNP rs1800871 of IL10 was protective (p = 0.0009) against high burden of S. mansoni. The alleles A of SNP rs2069739 of IL13 and G of SNP rs2243283 of IL4 were associated with an increased risk of having low plasma concentrations of IL-13 (P = 0.04) and IL-10 (P = 0.04), respectively. This study showed that host genetic polymorphisms may influence the outcome (high or low worm burden) of S. mansoni infections and also the plasma concentrations of some cytokines
    corecore