9 research outputs found

    Significance of DSMC Computed Aerothermal Environments in the Rarefied Regime for Atmospheric Entry Material Response

    Get PDF
    During Mars atmospheric entry, the Mars Science Laboratory (MSL) was protected by a 4.5 meters diameter ablative heatshield assembled in 113 tiles. The heatshield was made of NASA's flagship ablative material, the Phenolic Impregnated Carbon Ablator (PICA). Prior work compared the traditional one-dimensional and three-dimensional material response models at different locations in the heatshield. It was observed that the flow was basically one-dimensional in the nose and flank regions, but three-dimensional flow effects were observed in the outer flank. The objective of this work is to study the effects of the aerothermal environment on the material response. We extend prior work by computing aerothermal environments using the direct simulation Monte Carlo (DSMC) code SPARTA and the CFD code Data Parallel Line Relaxation (DPLR). SPARTA is used to compute environment in the rarefied regime prior to 48.4s of entry where the Knudsen number is such that the Navier-Stokes equations can be inaccurate. Similarly to previous work, the DPLR software is used to compute the hypersonic environment for laminar then turbulent boundary layer assumptions from 48.4 s up to 100 s after Entry Interface (EI) along the MSL 08-TPS-02/01a trajectory. We observe that extending the aerothermal environments to times prior to 48.4 s modifies the thermal response of the heat shield at the surface and in-depth; however the effects on the recession are minimal. Additionally, using the assumption of a turbulent boundary layer versus a laminar one leads to higher surface and in-depth temperatures, larger recession, and a displacement of the peak heating and peak recession location

    Inverse Determination of Aeroheating and Charring Ablator Response

    Get PDF
    The Mars Science Laboratory (MSL) was protected during its Mars atmospheric entry by an instrumented heatshield that used NASA's Phenolic Impregnated Carbon Ablator (PICA). PICA is a lightweight carbon fiber/polymeric resin material that offers excellent performances for protecting probes during planetary entry. The Mars Entry Descent and Landing Instrument (MEDLI) suite on MSL offers unique in-flight validation data for models of atmospheric entry and material response. MEDLI recorded, among others, time-resolved in-depth temperature data of PICA using thermocouple sensors assembled in the MEDLI Integrated Sensor Plugs (MISP). These measurements have been widely used in the literature as a validation benchmark for state-of-the-art ablation codes. The objective of this work is to perform an inverse estimate of the MSL heatshield material properties and aerothermal environment during Mars entry from the MISP flight data

    Full-Scale MSL Heatshield Material Response Using DSMC and CFD to Compute the Aerothermal Environments

    Get PDF
    During Mars atmospheric entry, the Mars Science Laboratory (MSL) was protected by a 4.5 meters diameter ablative heatshield assembled in 113 tiles [1]. The heatshield was made of NASA's flagship ablative material, the Phenolic Impregnated Carbon Ablator (PICA) [2]. Prior work [3] compared the traditional one-dimensional and three-dimensional material response models at different locations in the heatshield. It was observed that the flow was basically one-dimensional in the nose and flank regions, but three-dimensional flow effects were observed in the outer flank. Additionally, the effects of tiled versus monolithic heatshield models were also investigated. It was observed that the 3D tiled and 3D monolithic configurations yielded relative differences for in-depth material temperature up to 18% and 28%, respectively, when compared to the a 1D model

    Preliminary Measurements of the Motion of Arcjet Current Channel Using Inductive Magnetic Probes

    Get PDF
    This paper covers the design and first measurements of non-perturbative, external inductive magnetic diagnostics for arcjet constrictors which can measure the motion of the arc current channel. These measurements of arc motion are motivated by previous simulations using the ARC Heater Simulator (ARCHeS), which predicted unsteady arc motion due to the magnetic kink instability. Measurements of the kink instability are relevant to characterizing motion of the enthalpy profile of the arcjet, the arcjet operational stability, and electrode damage due to associated arc detachment events. These first measurements indicate 4 mm oscillations at 0.5-2 kHz of the current profile

    Chemische Verbindungen mit Antimon-Stickstoff-Bindungen : (ein Review)

    Get PDF
    Ein 脺berblick der Literaturangaben zu synthetisierten anorganischen (kohlenstofffreien) und elementorganischen (gemischten) Verbindungen mit Antimon-Stickstoff-Bindungen. Verallgemeinerungen der wichtigsten Verfahren zu ihrer Synthese, ihrer Eigenschaften und der Identifizierung der Bindungen mittels IR-Spektroskopie. Nachweis f眉r die M枚glichkeit der Polymerbildung in Systemen mit Antimon-Stickstoff-Bindungen

    Towards the Prediction of the Mars 2020 Heatshield Material Response

    Get PDF
    Introduction: NASAs next mission to Mars, the Mars 2020, will use the same heatshield of the Mars Science Laboratory (MSL) for thermal protection during entry, descent and landing. The heatshield is a tiled system made of Phenolic Impregnated Carbon Ablators (PICA) blocks [1]. PICA is a lightweight carbon fiber/polymeric resin material that offers excellent performances for protecting probes during planetary entry. The Mars Entry Descent and Landing Instrument (MEDLI) suite on MSL offers unique in-flight validation data for models of atmospheric entry and material response. MEDLI recorded, among others, time-resolved in-depth temperature data of PICA using thermocouple sensors assembled in the MEDLI Integrated Sensor Plugs (MISP). The objective of this work is to compare the thermal response of the MSL heatshield to the MISP flight data. In preparation to Mars 2020 post-flight analysis, the predictive material response capability is benchmarked against MEDLI flight data

    Heatshield Entry Modeling Using a Design, Analysis, and Optimization Toolbox

    Get PDF
    The Mars Science Laboratory (MSL) was protected during its Mars atmospheric entry by an instrumented heatshield that used NASA's Phenolic Impregnated Carbon Ablator (PICA). PICA is a lightweight carbon fiber/polymeric resin material that offers excellent performances for protecting probes during planetary entry. The Mars Entry Descent and Landing Instrument (MEDLI) suite on MSL offers unique in-flight validation data for models of atmospheric entry and material response. MEDLI recorded, among others, time-resolved in-depth temperature data of PICA using thermocouple sensors assembled in the MEDLI Integrated Sensor Plugs (MISP). The objective of this work is to showcase the capability of the Design, Analysis, and Optimization of Thermal Protection Materials (DAOTPM) software. DAO-TPM is a Python based framework that works as a link between mission design, aerothermal and radiative environment computation, Thermal Protection Systems (TPS) microstructure analysis, material response and optimization tools. The toolbox has a Graphical User Interface (GUI) that allows the user to build as well as run the various software and utilities used to design, analyze and optimize a heatshield during atmospheric entry
    corecore