22 research outputs found
Image Processing with Spiking Neuron Networks
International audienceArtificial neural networks have been well developed so far. First two generations of neural networks have had a lot of successful applications. Spiking Neuron Networks (SNNs) are often referred to as the third generation of neural networks which have potential to solve problems related to biological stimuli. They derive their strength and interest from an accurate modeling of synaptic interactions between neurons, taking into account the time of spike emission. SNNs overcome the computational power of neural networks made of threshold or sigmoidal units. Based on dynamic event-driven processing, they open up new horizons for developing models with an exponential capacity of memorizing and a strong ability to fast adaptation.Moreover, SNNs add a new dimension, the temporal axis, to the representation capacity and the processing abilities of neural networks. In this chapter, we present how SNN can be applied with efficacy in image clustering, segmentation and edge detection. Results obtained confirm the validity of the approach
Cell Microscopic Segmentation with Spiking Neuron Networks
International audienceSpiking Neuron Networks (SNNs) overcome the computational power of neural networks made of thresholds or sigmoidal units. Indeed, SNNs add a new dimension, the temporal axis, to the representation capacity and the processing abilities of neural networks. In this paper, we present how SNN can be applied with efficacy for cell microscopic image segmentation. Results obtained confirm the validity of the approach. The strategy is performed on cytological color images. Quantitative measures are used to evaluate the resulting segmentations
Mathematical morphology in any color space
In this paper, a new graph-based ordering of color vectors is presented for mathematical morphology purposes. An attractive propoerty of the proposed ordering is its color space independence. A complete graph is defined over a filter window and its structure is analyzed to construct an ordering of color vectors by finding a Hamiltonian path in a two-step algorithm. 1
Real-time passenger counting in buses using dense stereovision
We are interested particularly in the estimation of passenger flows entering or exiting from buses. To achieve this measurement, we propose a counting system based on stereo vision. To extract three-dimensional information in a reliable way, we use a dense stereo-matching procedure in which the winner-takes-all technique minimizes a correlation score. This score is an improved version of the sum of absolute differences, including several similarity criteria determined on pixels or regions to be matched. After calculating disparity maps for each image, morphological operations and a binarization with multiple thresholds are used to localize the heads of people passing under the sensor. The markers describing the heads of the passengers getting on or off the bus are then tracked during the image sequence to reconstitute their trajectories. Finally, people are counted from these reconstituted trajectories. The technique suggested was validated by several realistic experiments. We showed that it is possible to obtain counting accuracy of 99% and 97% on two large realistic data sets of image sequences showing realistic scenarios