204 research outputs found

    Dyson instability for 2D nonlinear O(N) sigma models

    Full text link
    For lattice models with compact field integration (nonlinear sigma models over compact manifolds and gauge theories with compact groups) and satisfying some discrete symmetry, the change of sign of the bare coupling g_0^2 at zero results in a mere discontinuity in the average energy rather than the catastrophic instability occurring in theories with integration over arbitrarily large fields. This indicates that the large order of perturbative series and the non-perturbative contributions should have unexpected features. Using the large-N limit of 2-dimensional nonlinear O(N) sigma model, we discuss the complex singularities of the average energy for complex 't Hooft coupling lambda= g_0^2N. A striking difference with the usual situation is the absence of cut along the negative real axis. We show that the zeros of the partition function can only be inside a clover shape region of the complex lambda plane. We calculate the density of states and use the result to verify numerically the statement about the zeros. We propose dispersive representations of the derivatives of the average energy for an approximate expression of the discontinuity. The discontinuity is purely non-perturbative and contributions at small negative coupling in one dispersive representation are essential to guarantee that the derivatives become exponentially small when lambda -> 0^+ We discuss the implications for gauge theories.Comment: 10 pages, 10 figures uses revte

    Asymptotically Universal Crossover in Perturbation Theory with a Field Cutoff

    Full text link
    We discuss the crossover between the small and large field cutoff (denoted x_{max}) limits of the perturbative coefficients for a simple integral and the anharmonic oscillator. We show that in the limit where the order k of the perturbative coefficient a_k(x_{max}) becomes large and for x_{max} in the crossover region, a_k(x_{max}) is proportional to the integral from -infinity to x_{max} of e^{-A(x-x_0(k))^2}dx. The constant A and the function x_0(k) are determined empirically and compared with exact (for the integral) and approximate (for the anharmonic oscillator) calculations. We discuss how this approach could be relevant for the question of interpolation between renormalization group fixed points.Comment: 15 pages, 11 figs., improved and expanded version of hep-th/050304

    The non-perturbative part of the plaquette in quenched QCD

    Get PDF
    We define the non-perturbative part of a quantity as the difference between its numerical value and the perturbative series truncated by dropping the order of minimal contribution and the higher orders. For the anharmonic oscillator, the double-well potential and the single plaquette gauge theory, the non-perturbative part can be parametrized as A (lambda)^B exp{-C/lambda} and the coefficients can be calculated analytically. For lattice QCD in the quenched approximation, the perturbative series for the average plaquette is dominated at low order by a singularity in the complex coupling plane and the asymptotic behavior can only be reached by using extrapolations of the existing series. We discuss two extrapolations that provide a consistent description of the series up to order 20-25. These extrapolations favor the idea that the non-perturbative part scales like (a/r_0)^4 with a/r_0 defined with the force method. We discuss the large uncertainties associated with this statement. We propose a parametrization of ln((a/r_0)) as the two-loop universal terms plus a constant and exponential corrections. These corrections are consistent with a_{1-loop}^2 and play an important role when beta<6. We briefly discuss the possibility of calculating them semi-classically at large beta.Comment: 13 pages, 16 figures, uses revtex, contains a new section with the uncertainties on the extrapolations, refs. adde

    A Numerical Study of the Hierarchical Ising Model: High Temperature Versus Epsilon Expansion

    Full text link
    We study numerically the magnetic susceptibility of the hierarchical model with Ising spins (σ=±1\sigma =\pm 1) above the critical temperature and for two values of the epsilon parameter. The integrations are performed exactly, using recursive methods which exploit the symmetries of the model. Lattices with up to 2182^18 sites have been used. Surprisingly, the numerical data can be fitted very well with a simple power law of the form (1−β/βc)−γ(1- \beta /\beta _c )^{- \gamma} for the {\it whole} temperature range. The numerical values for γ\gamma agree within a few percent with the values calculated with a high-temperature expansion but show significant discrepancies with the epsilon-expansion. We would appreciate comments about these results.Comment: 15 Pages, 12 Figures not included (hard copies available on request), uses phyzzx.te

    New Optimization Methods for Converging Perturbative Series with a Field Cutoff

    Full text link
    We take advantage of the fact that in lambda phi ^4 problems a large field cutoff phi_max makes perturbative series converge toward values exponentially close to the exact values, to make optimal choices of phi_max. For perturbative series terminated at even order, it is in principle possible to adjust phi_max in order to obtain the exact result. For perturbative series terminated at odd order, the error can only be minimized. It is however possible to introduce a mass shift in order to obtain the exact result. We discuss weak and strong coupling methods to determine the unknown parameters. The numerical calculations in this article have been performed with a simple integral with one variable. We give arguments indicating that the qualitative features observed should extend to quantum mechanics and quantum field theory. We found that optimization at even order is more efficient that at odd order. We compare our methods with the linear delta-expansion (LDE) (combined with the principle of minimal sensitivity) which provides an upper envelope of for the accuracy curves of various Pade and Pade-Borel approximants. Our optimization method performs better than the LDE at strong and intermediate coupling, but not at weak coupling where it appears less robust and subject to further improvements. We also show that it is possible to fix the arbitrary parameter appearing in the LDE using the strong coupling expansion, in order to get accuracies comparable to ours.Comment: 10 pages, 16 figures, uses revtex; minor typos corrected, refs. adde

    Fisher's zeros as boundary of renormalization group flows in complex coupling spaces

    Full text link
    We propose new methods to extend the renormalization group transformation to complex coupling spaces. We argue that the Fisher's zeros are located at the boundary of the complex basin of attraction of infra-red fixed points. We support this picture with numerical calculations at finite volume for two-dimensional O(N) models in the large-N limit and the hierarchical Ising model. We present numerical evidence that, as the volume increases, the Fisher's zeros of 4-dimensional pure gauge SU(2) lattice gauge theory with a Wilson action, stabilize at a distance larger than 0.15 from the real axis in the complex beta=4/g^2 plane. We discuss the implications for proofs of confinement and searches for nontrivial infra-red fixed points in models beyond the standard model.Comment: 4 pages, 3 fig

    Bs→KℓνB_s \to K \ell\nu form factors with 2+1 flavors

    Full text link
    Using the MILC 2+1 flavor asqtad quark action ensembles, we are calculating the form factors f0f_0 and f+f_+ for the semileptonic Bs→KℓνB_s \rightarrow K \ell\nu decay. A total of six ensembles with lattice spacing from ≈0.12\approx0.12 to 0.06 fm are being used. At the coarsest and finest lattice spacings, the light quark mass ml′m'_l is one-tenth the strange quark mass ms′m'_s. At the intermediate lattice spacing, the ratio ml′/ms′m'_l/m'_s ranges from 0.05 to 0.2. The valence bb quark is treated using the Sheikholeslami-Wohlert Wilson-clover action with the Fermilab interpretation. The other valence quarks use the asqtad action. When combined with (future) measurements from the LHCb and Belle II experiments, these calculations will provide an alternate determination of the CKM matrix element ∣Vub∣|V_{ub}|.Comment: 8 pages, 6 figures, to appear in the Proceedings of Lattice 2017, June 18-24, Granada, Spai

    B→πℓℓB\to\pi\ell\ell form factors for new-physics searches from lattice QCD

    Get PDF
    The rare decay B→πℓ+ℓ−B\to\pi\ell^+\ell^- arises from b→db\to d flavor-changing neutral currents and could be sensitive to physics beyond the Standard Model. Here, we present the first abab-initioinitio QCD calculation of the B→πB\to\pi tensor form factor fTf_T. Together with the vector and scalar form factors f+f_+ and f0f_0 from our companion work [J. A. Bailey et al.et~al., Phys. Rev. D 92, 014024 (2015)], these parameterize the hadronic contribution to B→πB\to\pi semileptonic decays in any extension of the Standard Model. We obtain the total branching ratio BR(B+→π+μ+μ−)=20.4(2.1)×10−9{\text{BR}}(B^+\to\pi^+\mu^+\mu^-)=20.4(2.1)\times10^{-9} in the Standard Model, which is the most precise theoretical determination to date, and agrees with the recent measurement from the LHCb experiment [R. Aaij et al.et~al., JHEP 1212, 125 (2012)]. Note added: after this paper was submitted for publication, LHCb announced a new measurement of the differential decay rate for this process [T. Tekampe, talk at DPF 2015], which we now compare to the shape and normalization of the Standard-Model prediction.Comment: V3: Corrected errors in results for Standard-Model differential and total decay rates in abstract, Fig. 3, Table IV, and outlook. Added new preliminary LHCb data to Fig. 3 and brief discussion after outlook. Replaced outdated correlation matrix in Table III with correct final version. Other minor wording changes and references added. 7 pages, 4 tables, 3 figure

    B→Kl+l−B\to Kl^+l^- decay form factors from three-flavor lattice QCD

    Get PDF
    We compute the form factors for the B→Kl+l−B \to Kl^+l^- semileptonic decay process in lattice QCD using gauge-field ensembles with 2+1 flavors of sea quark, generated by the MILC Collaboration. The ensembles span lattice spacings from 0.12 to 0.045 fm and have multiple sea-quark masses to help control the chiral extrapolation. The asqtad improved staggered action is used for the light valence and sea quarks, and the clover action with the Fermilab interpretation is used for the heavy bb quark. We present results for the form factors f+(q2)f_+(q^2), f0(q2)f_0(q^2), and fT(q2)f_T(q^2), where q2q^2 is the momentum transfer, together with a comprehensive examination of systematic errors. Lattice QCD determines the form factors for a limited range of q2q^2, and we use the model-independent zz expansion to cover the whole kinematically allowed range. We present our final form-factor results as coefficients of the zz expansion and the correlations between them, where the errors on the coefficients include statistical and all systematic uncertainties. We use this complete description of the form factors to test QCD predictions of the form factors at high and low q2q^2. We also compare a Standard-Model calculation of the branching ratio for B→Kl+l−B \to Kl^+l^- with experimental data.Comment: V2: Fig.7 added. Typos text corrected. Reference added. Version published in Phys. Rev.
    • …
    corecore