788 research outputs found

    On the computation of sets of points with low Lebesgue constant on the unit disk

    Get PDF
    In this paper of numerical nature, we test the Lebesgue constant of several available point sets on the disk and propose new ones that enjoy low Lebesgue constant. Furthermore we extend some results in Cuyt (2012), analyzing the case of Bos arrays whose radii are nonnegative Gauss–Gegenbauer–Lobatto nodes with exponent, noticing that the optimal still allows to achieve point sets on with low Lebesgue constant for degrees. Next we introduce an algorithm that through optimization determines point sets with the best known Lebesgue constants for. Finally, we determine theoretically a point set with the best Lebesgue constant for the case

    A Lanczos Method for Approximating Composite Functions

    Full text link
    We seek to approximate a composite function h(x) = g(f(x)) with a global polynomial. The standard approach chooses points x in the domain of f and computes h(x) at each point, which requires an evaluation of f and an evaluation of g. We present a Lanczos-based procedure that implicitly approximates g with a polynomial of f. By constructing a quadrature rule for the density function of f, we can approximate h(x) using many fewer evaluations of g. The savings is particularly dramatic when g is much more expensive than f or the dimension of x is large. We demonstrate this procedure with two numerical examples: (i) an exponential function composed with a rational function and (ii) a Navier-Stokes model of fluid flow with a scalar input parameter that depends on multiple physical quantities
    • …
    corecore