41 research outputs found

    Effects of low-frequency noise and temperature on copepod and amphipod performance

    Get PDF
    Offshore wind farms (OWF) are bound to increase as a mitigation strategy to reduce the emission of greenhouse gases, it is crucial to address all of their potential impacts on key ecosystem components in detail. Especially, the chronic effect of noise created during OWF turbine operations (duration 20-25 years) must be understood. As sensitive receptors cover the whole body of crustaceans to detect their surroundings, those low frequency noises may disrupt basic ecological (prey detection and predator avoidance) and physiological (metabolism) functions. Here we present an investigation designed to understand the joint effect of noise and increased temperature on copepod. The pelagic copepod Acartia tonsa is commonly used as a proxy for a range of fundamental processes that relate to marine planktonic crustaceans. Given that higher temperatures increase metabolic demands, the experiment was conducted at three different temperature levels (18, 21, 24°C) combined with silent and noise treatments. We assessed the combined effects on energetic balance, and oxidative stress indicators. The outputs of the project will provide important information on the potential impact of low-frequency noise on marine invertebrate key organisms with implications for secondary production and ecosystem functioning

    A systematic study of zooplankton-based indices of marine ecological change and water quality: Application to the European marine strategy framework Directive (MSFD)

    Get PDF
    Marine zooplankton are central components of holistic ecosystem assessments due to their intermediary role in the food chain, linking the base of the food chain with higher trophic levels. As a result, these organisms incorporate the inherent properties and changes occurring atall levels of the marine ecosystem, temporally integrating signatures of physical and chemical conditions. For this reason, zooplankton-based biometrics are widely accepted as useful tools for assessing and monitoring the ecological health and integrity of aquatic systems. The European Marine Strategy Framework Directive (EU-MSFD) requires the use of different types of bio-monitors, including zooplankton, to monitor progress towards achieving specific environmental and water quality targets in EU. However, there is currently no comprehensive synthesis of zooplankton indices development, use, and associated challenges. We addressed this issue with a two-step approach. First, we formulated the indicator-metrics-indices cycle (IMIC) to redefine the closely related but often ambiguously utilized terms - indicator, metric and index, highlighting the convergence between them and the iterative nature of their interaction. Secondly, we formulated frameworks for synthesizing, presenting and systematically applying zooplankton indices based on the IMIC framework. The main benefits of the IMIC are twofold: 1). to disambiguate the key elements: indicators, metrics, and indices, revealing their links to an operational ecological indicator system, and 2) to serve as an organizing tool for the coherent classification of indices according to the MSFD descriptors. Using the IMIC framework, we identified and described two broad categories of indices namely the core biodiversity indices already in use in the Baltic Sea and North Atlantic regions, including the ‘Zooplankton Mean Size and Total Stock (zooplankton MSTS)’ and 'Plankton Lifeforms index (PLI)', and stressor-response indices retrieved from the existing literature, elucidating their applicability to different MSFD descriptors. Finally, major challenges of developing new indices and applying existing ones in the context of the MSFD were critically addressed and some solutions were proposed

    An integrated multiple driver mesocosm experiment reveals the effect of global change on planktonic food web structure

    Get PDF
    AbstractGlobal change puts coastal marine systems under pressure, affecting community structure and functioning. Here, we conducted a mesocosm experiment with an integrated multiple driver design to assess the impact of future global change scenarios on plankton, a key component of marine food webs. The experimental treatments were based on the RCP 6.0 and 8.5 scenarios developed by the IPCC, which were Extended (ERCP) to integrate the future predicted changing nutrient inputs into coastal waters. We show that simultaneous influence of warming, acidification, and increased N:P ratios alter plankton dynamics, favours smaller phytoplankton species, benefits microzooplankton, and impairs mesozooplankton. We observed that future environmental conditions may lead to the rise of Emiliania huxleyi and demise of Noctiluca scintillans, key species for coastal planktonic food webs. In this study, we identified a tipping point between ERCP 6.0 and ERCP 8.5 scenarios, beyond which alterations of food web structure and dynamics are substantial.</jats:p

    A common temperature dependence of nutritional demands in ectotherms

    Get PDF
    In light of ongoing climate change, it is increasingly important to know how nutritional requirements of ectotherms are affected by changing temperatures. Here, we analyse the wide thermal response of phosphorus (P) requirements via elemental gross growth efficiencies of Carbon (C) and P, and the Threshold Elemental Ratios in different aquatic invertebrate ectotherms: the freshwater model species Daphnia magna, the marine copepod Acartia tonsa, the marine heterotrophic dinoflagellate Oxyrrhis marina, and larvae of two populations of the marine crab Carcinus maenas. We show that they all share a non-linear cubic thermal response of nutrient requirements. Phosphorus requirements decrease from low to intermediate temperatures, increase at higher temperatures and decrease again when temperature is excessive. This common thermal response of nutrient requirements is of great importance if we aim to understand or even predict how ectotherm communities will react to global warming and nutrient-driven eutrophication

    In situ cell division and mortality rates of SAR11, SAR86, Bacteroidetes, and Aurantivirga during phytoplankton blooms reveal differences in population controls

    Get PDF
    Net growth of microbial populations, i.e., changes in abundances over time, can be studied using 16S rRNA fluorescence in situ hybridization (FISH). However, this approach does not differentiate between mortality and cell division rates. We used FISH-based image cytometry in combination with dilution culture experiments to study net growth, cell division, and mortality rates of four bacterial taxa over two distinct phytoplankton blooms: the oligotrophs SAR11 and SAR86, the copiotrophic phylum Bacteroidetes, and its genus Aurantivirga. Cell volumes, ribosome content, and frequency of dividing cells (FDC) co-varied over time. Among the three, FDC was the most suitable predictor to calculate the cell division rates for the selected taxa. The FDC-derived cell division rates for SAR86 of up to 0.8 d-1 and Aurantivirga of up to 1.9 d-1 differed, as expected for oligotrophs and copiotrophs. Surprisingly, SAR11 also reached high cell division rates of up to 1.9 d-1, even before the onset of phytoplankton blooms. For all four taxonomic groups, the abundance-derived net growth (-0.6 to 0.5 d-1) was about an order of magnitude lower than the cell division rates. Consequently, mortality rates were comparably high to cell division rates, indicating that about 90% of bacterial production is recycled without apparent time lag within one day. Our study shows that determining taxon-specific cell division rates complements omics-based tools and provides unprecedented clues on individual bacterial growth strategies including bottom-up and top-down controls

    Reaching a Consensus: Terminology and Concepts Used in Coordination and Decision-Making Research

    Get PDF
    Research on coordination and decision-making in humans and nonhuman primates has increased considerably throughout the last decade. However, terminology has been used inconsistently, hampering the broader integration of results from different studies. In this short article, we provide a glossary containing the central terms of coordination and decision-making research. The glossary is based on previous definitions that have been critically revised and annotated by the participants of the symposium “Where next? Coordination and decision-making in primate groups” at the XXIIIth Congress of the International Primatological Society (IPS) in Kyoto, Japan. We discuss a number of conceptual and methodological issues and highlight consequences for their implementation. In summary, we recommend that future studies on coordination and decision-making in animal groups do not use the terms “combined decision” and “democratic/despotic decision-making.” This will avoid ambiguity as well as anthropocentric connotations. Further, we demonstrate the importance of 1) taxon-specific definitions of coordination parameters (initiation, leadership, followership, termination), 2) differentiation between coordination research on individual-level process and group-level outcome, 3) analyses of collective action processes including initiation and termination, and 4) operationalization of successful group movements in the field to collect meaningful and comparable data across different species

    Aquatic nutrient cycling

    No full text

    How sharp is the knife? Herbivore and carnivore sensitivity to resource stoichiometric quality

    Get PDF
    While understanding feeding preferences of herbivores and carnivores is of major importance in ecology, we still know very little on the sensitivity of different functional groups to suboptimal stoichiometric resource quality. Here, we apply concepts of ecological stoichiometry to shed light on differences in the nutritional requirements of herbivores and carnivores, and to make predictions on the influence of suboptimal resource stoichiometric quality on the fitness of these different consumers to. Herbivores generally experience more variation in the quality of their resource than carnivores do, and these differences have likely shaped the extent to which coping mechanisms have evolved. Consequently, we expect 1) herbivores to maintain their stoichiometric homeostasis over a broader range of resource stoichiometry than carnivores, 2) the threshold elemental ratio (TER), i.e. the dietary carbon to nutrient ratio which maximizes fitness, of herbivores to be higher than that of carnivores, 3) a narrower and sharper knife-edge response in carnivores than herbivores and 4) asymmetric knife-edge responses indicating a higher sensitivity to the diet quality that consumers are not used to dealing with, namely nutrient limitation in carnivores and nutrient excess in herbivores. Our study poses that documenting the ranges of resource quality where consumer fitness declines in diverse organisms is a very promising avenue to increase our understanding of community composition and food web functioning
    corecore