261 research outputs found

    Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration

    Get PDF
    Invasion fronts in ecology are well studied but very few mathematical results concern the case with variable motility (possibly due to mutations). Based on an apparently simple reaction-diffusion equation, we explain the observed phenomena of front acceleration (when the motility is unbounded) as well as other quantitative results, such as the selection of the most motile individuals (when the motility is bounded). The key argument for the construction and analysis of traveling fronts is the derivation of the dispersion relation linking the speed of the wave and the spatial decay. When the motility is unbounded we show that the position of the front scales as t3/2t^{3/2}. When the mutation rate is low we show that the canonical equation for the dynamics of the fittest trait should be stated as a PDE in our context. It turns out to be a type of Burgers equation with source term.Comment: 7 page

    A linear triple quantum dot system in isolated configuration

    Full text link
    The scaling up of electron spin qubit based nanocircuits has remained challenging up to date and involves the development of efficient charge control strategies. Here we report on the experimental realization of a linear triple quantum dot in a regime isolated from the reservoir. We show how this regime can be reached with a fixed number of electrons. Charge stability diagrams of the one, two and three electron configurations where only electron exchange between the dots is allowed are observed. They are modelled with established theory based on a capacitive model of the dot systems. The advantages of the isolated regime with respect to experimental realizations of quantum simulators and qubits are discussed. We envision that the results presented here will make more manipulation schemes for existing qubit implementations possible and will ultimately allow to increase the number of tunnel coupled quantum dots which can be simultaneously controlled

    Quantum manipulation of two-electron spin states in metastable double quantum dots

    Full text link
    We studied experimentally the dynamics of the exchange interaction between two antiparallel electron spins in a so-called metastable double quantum dot where coupling to the electron reservoirs can be ignored. We demonstrate that the level of control of such a double dot is higher than in conventional double dots. In particular, it allows to couple coherently two electron spins in an efficient manner following a scheme initially proposed by Loss and DiVincenzo. The present study demonstrates that metastable quantum dots are a possible route to increase the number of coherently coupled quantum dots.Comment: 5 pages, 4 figure

    High density InAlAs/GaAlAs quantum dots for non-linear optics in microcavities

    Get PDF
    Structural and optical properties of InAlAs/GaAlAs quantum dots grown by molecular beam epitaxy are studied using transmission electron microscopy, temperature- and time resolvedphotoluminescence. The control of the recombination lifetime (50 ps – 1.25 ns), and of the dot density (5.10−8 – 2.1011 cm−3) strongly suggest that these material systems can find wide applications in opto-electronic devices as focusing non linear dispersive materials as well as fast saturable absorbers

    Injection of a single electron from static to moving quantum dots

    Full text link
    We study the injection mechanism of a single electron from a static quantum dot into a moving quantum dot created in a long depleted channel with surface acoustic waves (SAWs). We demonstrate that such a process is characterized by an activation law with a threshold that depends on the SAW amplitude and the dot-channel potential gradient. By increasing sufficiently the SAW modulation amplitude, we can reach a regime where the transfer is unitary and potentially adiabatic. This study points at the relevant regime to use moving dots in quantum information protocols.Comment: 5 pages, 4 figure

    WIMP direct detection overview

    Get PDF
    This review on weakly interacting massive particle (WIMP) dark matter direct detection focuses on experimental approaches and the corresponding physics basics. The presentation is intended to provide a quick and concise introduction for non-specialists to this fast evolving topic of astroparticle physics.Comment: 13 pages, 6 figures, invited review for the Proc. XXth Int. Conf. Neutrino Physics and Astrophysics, May 25-30, 2002, Munich, Germany; version includes correction of typo in eqn.2; to appear in Nucl. Phys. B Proc. Supp
    • …
    corecore