19 research outputs found

    Polyphosphoinositides suppress the adhesion of Haemophilus influenzae to pharyngeal cells

    Get PDF
    BACKGROUND: One of the primary causes of otitis media (OM), an inflammation of the middle ear, is the bacterium Haemophilus influenzae (HI). OM often occurs to young children, and is mostly treated with antibiotics. Due to concerns over bacterial resistance toward antibiotics, reliable prophylactic treatments such as administrating anti-adhesion agents are now viewed as viable alternatives. RESULTS: The present study tested the feasibilty of using phosphoinositides as anti-adhesion agents against HI cells. Cells of non-typeable HI were radiolabeled with (111- )indium-oxine, pre-incubated with various individual phosphoinositides for 15 minutes at 37°C, and incubated with a monolayer of human pharynx carcinoma (DT 562) cells for 20 minutes at 37°C. The result showed that at 0.1 mg/mL dipalmitoylphosphatidylinositol-3,4-diphosphate (PI-3,4-PP) had the highest anti-adhesion activity, followed by phosphatidylinositol-3-phosphate (PI-3-P) and phosphatidylinositol-4-phosphate (PI-4-P). The anti-adhesion activity of PI-3,4-PP was dose-dependent ranging from 0.006 to 0.1 mg/mL. In addition, results from an in vivo study demonstrated that pre-incubation of HI cells with PI-3,4-PP at 1 mg/mL suppressed the growth of HI in nasopharynx of neonatal rats. CONCLUSIONS: These findings suggest that PI-3-P and PI-4-P and more so PI-3,4-PP may serve as prophylactic agents against HI adhesion and colonization

    Reversal of oncogene transformation and suppression of tumor growth by the novel IGF1R kinase inhibitor A-928605

    Get PDF
    BACKGROUND: The insulin-like growth factor (IGF) axis is an important signaling pathway in the growth and survival of many cell and tissue types. This pathway has also been implicated in many aspects of cancer progression from tumorigenesis to metastasis. The multiple roles of IGF signaling in cancer suggest that inhibition of the pathway might yield clinically effective therapeutics. METHODS: We describe A-928605, a novel pyrazolo [3,4-d]pyrimidine small molecule inhibitor of the receptor tyrosine kinases (IGF1R and IR) responsible for IGF signal transduction. This compound was first tested for its activity and selectivity via conventional in vitro kinome profiling and cellular IGF1R autophosphorylation. Additionally, cellular selectivity and efficacy of A-928605 were analyzed in an IGF1R oncogene-addicted cell line by proliferation, signaling and microarray studies. Finally, in vivo efficacy of A-928605 was assessed in the oncogene-addicted cell line and in a neuroblastoma model as a single agent as well as in combination with clinically approved therapeutics targeting EGFR in models of pancreatic and non-small cell lung cancers. RESULTS: A-928605 is a selective IGF1R inhibitor that is able to abrogate activation of the pathway both in vitro and in vivo. This novel compound dosed as a single agent is able to produce significant growth inhibition of neuroblastoma xenografts in vivo. A-928605 is also able to provide additive effects when used in combination with clinically approved agents directed against EGFR in non-small cell lung and human pancreatic tumor models. CONCLUSION: These results suggest that a selective IGF1R inhibitor such as A-928605 may provide a useful clinical therapeutic for IGF pathway affected tumors and warrants further investigation

    ABT-414, an Antibody-Drug Conjugate Targeting a Tumor-Selective EGFR Epitope.

    No full text
    Targeting tumor-overexpressed EGFR with an antibody-drug conjugate (ADC) is an attractive therapeutic strategy; however, normal tissue expression represents a significant toxicity risk. The anti-EGFR antibody ABT-806 targets a unique tumor-specific epitope and exhibits minimal reactivity to EGFR in normal tissue, suggesting its suitability for the development of an ADC. We describe the binding properties and preclinical activity of ABT-414, an ABT-806 monomethyl auristatin F conjugate. In vitro, ABT-414 selectively kills tumor cells overexpressing wild-type or mutant forms of EGFR. ABT-414 inhibits the growth of xenograft tumors with high EGFR expression and causes complete regressions and cures in the most sensitive models. Tumor growth inhibition is also observed in tumor models with EGFR mutations, including activating mutations and those with the exon 2-7 deletion [EGFR variant III (EGFRvIII)], commonly found in glioblastoma multiforme. ABT-414 exhibits potent cytotoxicity against glioblastoma multiforme patient-derived xenograft models expressing either wild-type EGFR or EGFRvIII, with sustained regressions and cures observed at clinically relevant doses. ABT-414 also combines with standard-of-care treatment of radiation and temozolomide, providing significant therapeutic benefit in a glioblastoma multiforme xenograft model. On the basis of these results, ABT-414 has advanced to phase I/II clinical trials, and objective responses have been observed in patients with both amplified wild-type and EGFRvIII-expressing tumors. Mol Cancer Ther; 15(4); 661-9. ©2016 AACR. Mol Cancer Ther 2016 Apr; 15(4): 661-
    corecore