36 research outputs found
Pleckstrin Homology [PH] domain, structure, mechanism, and contribution to human disease
The pleckstrin homology [PH] domain is a structural fold found in more than 250 proteins making it the 11th most common domain in the human proteome. 25% of family members have more than one PH domain and some PH domains are split by one, or several other, protein domains although still folding to give functioning PH domains. We review mechanisms of PH domain activity, the role PH domain mutation plays in human disease including cancer, hyperproliferation, neurodegeneration, inflammation, and infection, and discuss pharmacotherapeutic approaches to regulate PH domain activity for the treatment of human disease. Almost half PH domain family members bind phosphatidylinositols [PIs] that attach the host protein to cell membranes where they interact with other membrane proteins to give signaling complexes or cytoskeleton scaffold platforms. A PH domain in its native state may fold over other protein domains thereby preventing substrate access to a catalytic site or binding with other proteins. The resulting autoinhibition can be released by PI binding to the PH domain, or by protein phosphorylation thus providing fine tuning of the cellular control of PH domain protein activity. For many years the PH domain was thought to be undruggable until high-resolution structures of human PH domains allowed structure-based design of novel inhibitors that selectively bind the PH domain. Allosteric inhibitors of the Akt1 PH domain have already been tested in cancer patients and for proteus syndrome, with several other PH domain inhibitors in preclinical development for treatment of other human diseases
Structural Homologies between Phenformin, Lipitor and Gleevec Aim the Same Metabolic Oncotarget in Leukemia and Melanoma
Phenformin’s recently demonstrated efficacy in melanoma and Gleevec’s demonstrated anti-proliferative action in chronic myeloid leukemia may lie within these drugs’ significant pharmacokinetics, pharmacodynamics and structural homologies, which are reviewed herein. Gleevec’s success in turning a fatal leukemia into a manageable chronic disease has been trumpeted in medical, economic, political and social circles because it is considered the first successful targeted therapy. Investments have been immense in omics analyses and while in some cases they greatly helped the management of patients, in others targeted therapies failed to achieve clinically stable recurrence-free disease course or to substantially extend survival. Nevertheless protein kinase controlling approaches have persisted despite early warnings that the targeted genomics narrative is overblown. Experimental and clinical observations with Phenformin suggest an alternative explanation for Gleevec’s mode of action. Using 13C-guided precise flux measurements, a comparative multiple cell line study demonstrated the drug’s downstream impact on submolecular fatty acid processing metabolic events that occurred independent of Gleevec’s molecular target. Clinical observations that hyperlipidemia and diabetes are both reversed in mice and in patients taking Gleevec support the drugs’ primary metabolic targets by biguanides and statins. This is evident by structural data demonstrating that Gleevec shows pyridine- and phenyl-guanidine homology with Phenformin and identical phenylcarbamoyl structural and ligand binding homology with Lipitor. The misunderstood mechanism of action of Gleevec is emblematic of the pervasive flawed reasoning that genomic analysis will lead to targeted, personalized diagnosis and therapy. The alternative perspective for Gleevec’s mode of action may turn oncotargets towards metabolic channel reaction architectures in leukemia and melanoma, as well as in other cancers
Structural Homologies between Phenformin, Lipitor and Gleevec Aim the Same Metabolic Oncotarget in Leukemia and Melanoma
Phenformin’s recently demonstrated efficacy in melanoma and Gleevec’s demonstrated anti-proliferative action in chronic myeloid leukemia may lie within these drugs’ significant pharmacokinetics, pharmacodynamics and structural homologies, which are reviewed herein. Gleevec’s success in turning a fatal leukemia into a manageable chronic disease has been trumpeted in medical, economic, political and social circles because it is considered the first successful targeted therapy. Investments have been immense in omics analyses and while in some cases they greatly helped the management of patients, in others targeted therapies failed to achieve clinically stable recurrence-free disease course or to substantially extend survival. Nevertheless protein kinase controlling approaches have persisted despite early warnings that the targeted genomics narrative is overblown. Experimental and clinical observations with Phenformin suggest an alternative explanation for Gleevec’s mode of action. Using 13C-guided precise flux measurements, a comparative multiple cell line study demonstrated the drug’s downstream impact on submolecular fatty acid processing metabolic events that occurred independent of Gleevec’s molecular target. Clinical observations that hyperlipidemia and diabetes are both reversed in mice and in patients taking Gleevec support the drugs’ primary metabolic targets by biguanides and statins. This is evident by structural data demonstrating that Gleevec shows pyridine- and phenyl-guanidine homology with Phenformin and identical phenylcarbamoyl structural and ligand binding homology with Lipitor. The misunderstood mechanism of action of Gleevec is emblematic of the pervasive flawed reasoning that genomic analysis will lead to targeted, personalized diagnosis and therapy. The alternative perspective for Gleevec’s mode of action may turn oncotargets towards metabolic channel reaction architectures in leukemia and melanoma, as well as in other cancers
Direct inhibition of hypoxia-inducible transcription factor complex with designed dimeric epidithiodiketopiperazine.
Selective blockade of hypoxia-inducible gene expression by designed small molecules would prove valuable in suppressing tumor angiogenesis, metastasis and altered energy metabolism. We report the design, synthesis, and biological evaluation of a dimeric epidithiodiketopiperazine (ETP) small molecule transcriptional antagonist targeting the interaction of the p300/CBP coactivator with the transcription factor HIF-1alpha. Our results indicate that disrupting this interaction results in rapid downregulation of hypoxia-inducible genes critical for cancer progression. The observed effects are compound-specific and dose-dependent. Controlling gene expression with designed small molecules targeting the transcription factor-coactivator interface may represent a new approach for arresting tumor growth