47 research outputs found

    CXCL12-Mediated Regulation of ANP32A/Lanp, A Component of the Inhibitor of Histone Acetyl Transferase (INHAT) Complex, in Cortical Neurons

    Get PDF
    The chemokine receptor CXCR4 and its endogenous ligand, CXCL12, are involved in development and homeostasis of the central nervous system and in the neuropathology of various neuroinflammatory/infectious disorders, including neuroAIDS. Our previous studies have shown that CXCR4 regulates cell cycle proteins that affect neuronal survival, such as the retinoblastoma protein, Rb. These studies also suggested that Rb-mediated gene repression might be involved in the neuronal protection against NMDA exitotoxicity conferred by stimulation of the CXCL12/CXCR4 axis. In order to further test this hypothesis, we focused on the potential interaction of Rb with another protein implicated in regulation of gene expression, leucine-rich acidic nuclear protein (Lanp), also known as ANP32A/pp32/PHAP1. Lanp is a critical member of the protein complex inhibitor of histone acetyl transferase (INHAT), which prevents histone tail's acetylation, thus leading to transcriptional repression. Our data show that, in primary rat cortical neurons cultured for up to 30 days, Lanp is predominantly localized into the nucleus throughout the culture period, in line with in vivo evidence. Moreover, co-immunoprecipitation experiments show that endogenous Lanp interacts with Rb in neurons. Stimulation of CXCR4 by its endogenous ligand, CXCL12, increased Lanp protein levels in these neurons. Importantly, the effect of CXCL12 was preserved after exposure of neurons to NMDA. Finally, overexpression of exogenous Lanp in the neurons protects them from excitotoxicity. Overall, these findings suggest that Lanp can interact with Rb in both young and mature neurons and is implicated in the regulation of neuronal survival by CXCL12/CXCR4. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11481-010-9228-5) contains supplementary material, which is available to authorized users

    The chemokine receptor CX3CR1 is directly involved in the arrest of breast cancer cells to the skeleton

    Get PDF
    Abstract Introduction Skeletal metastases from breast adenocarcinoma are responsible for most of the morbidity and mortality associated with this tumor and represent a significant and unmet need for therapy. The arrival of circulating cancer cells to the skeleton depends first on the adhesive interactions with the endothelial cells lining the bone marrow sinusoids, and then the extravasation toward chemoattractant molecules produced by the surrounding bone stroma. We have previously shown that the membrane-bound and cell-adhesive form of the chemokine fractalkine is exposed on the luminal side of human bone marrow endothelial cells and that bone stromal cells release the soluble and chemoattractant form of this chemokine. The goal of this study was to determine the role of fractalkine and its specific receptor CX3CR1 in the homing of circulating breast cancer cells to the skeleton. Methods We employed a powerful pre-clinical animal model of hematogenous metastasis, in which fluorescent cancer cells are identified immediately after their arrival to the bone. We engineered cells to over-express either wild-type or functional mutants of CX3CR1 as well as employed transgenic mice knockout for fractalkine. Results CX3CR1 protein is detected in human tissue microarrays of normal and malignant mammary glands. We also found that breast cancer cells expressing high levels of this receptor have a higher propensity to spread to the skeleton. Furthermore, studies with fractalkine-null transgenic mice indicate that the ablation of the adhesive and chemotactic ligand of CX3CR1 dramatically impairs the skeletal dissemination of circulating cancer cells. Finally, we conclusively confirmed the crucial role of CX3CR1 on breast cancer cells for both adhesion to bone marrow endothelium and extravasation into the bone stroma. Conclusions We provide compelling evidence that the functional interactions between fractalkine produced by both the endothelial and stromal cells of bone marrow and the CX3CR1 receptor on breast cancer cells are determinant in the arrest and initial lodging needed for skeletal dissemination

    The chemokine receptor CX3CR1 is directly involved in the arrest of breast cancer cells to the skeleton

    Get PDF
    Abstract Introduction Skeletal metastases from breast adenocarcinoma are responsible for most of the morbidity and mortality associated with this tumor and represent a significant and unmet need for therapy. The arrival of circulating cancer cells to the skeleton depends first on the adhesive interactions with the endothelial cells lining the bone marrow sinusoids, and then the extravasation toward chemoattractant molecules produced by the surrounding bone stroma. We have previously shown that the membrane-bound and cell-adhesive form of the chemokine fractalkine is exposed on the luminal side of human bone marrow endothelial cells and that bone stromal cells release the soluble and chemoattractant form of this chemokine. The goal of this study was to determine the role of fractalkine and its specific receptor CX3CR1 in the homing of circulating breast cancer cells to the skeleton. Methods We employed a powerful pre-clinical animal model of hematogenous metastasis, in which fluorescent cancer cells are identified immediately after their arrival to the bone. We engineered cells to over-express either wild-type or functional mutants of CX3CR1 as well as employed transgenic mice knockout for fractalkine. Results CX3CR1 protein is detected in human tissue microarrays of normal and malignant mammary glands. We also found that breast cancer cells expressing high levels of this receptor have a higher propensity to spread to the skeleton. Furthermore, studies with fractalkine-null transgenic mice indicate that the ablation of the adhesive and chemotactic ligand of CX3CR1 dramatically impairs the skeletal dissemination of circulating cancer cells. Finally, we conclusively confirmed the crucial role of CX3CR1 on breast cancer cells for both adhesion to bone marrow endothelium and extravasation into the bone stroma. Conclusions We provide compelling evidence that the functional interactions between fractalkine produced by both the endothelial and stromal cells of bone marrow and the CX3CR1 receptor on breast cancer cells are determinant in the arrest and initial lodging needed for skeletal dissemination

    COVID-19 and possible links with Parkinson\u27s disease and parkinsonism: from bench to bedside

    Get PDF
    This Viewpoint discusses insights from basic science and clinical perspectives on coronavirus disease 2019 (COVID-19)/severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection in the brain, with a particular focus on Parkinson\u27s disease. Major points include that neuropathology studies have not answered the central issue of whether the virus enters central nervous system neurons, astrocytes or microglia, and the brain vascular cell types that express virus have not yet been identified. Currently, there is no clear evidence for human neuronal or astrocyte expression of angiotensin-converting enzyme 2 (ACE2), the major receptor for viral entry, but ACE2 expression may be activated by inflammation, and a comparison of healthy and infected brains is important. In contrast to the 1918 influenza pandemic and avian flu, reports of encephalopathy in COVID-19 have been slow to emerge, and there are so far no documented reports of parkinsonism apart from a single case report. We recommend consensus guidelines for the clinical treatment of Parkinson\u27s patients with COVID-19. While a role for the virus in causing or exacerbating Parkinson\u27s disease appears unlikely at this time, aggravation of specific motor and non-motor symptoms has been reported, and it will be important to monitor subjects after recovery, particularly for those with persisting hyposmia

    CXCR7 Protein Expression in Human Adult Brain and Differentiated Neurons

    Get PDF
    Background: CXCR7 and CXCR4 are receptors for the chemokine CXCL12, which is involved in essential functions of the immune and nervous systems. Although CXCR7 transcripts are widely expressed throughout the central nervous system, little is known about its protein distribution and function in the adult brain. To evaluate its potential involvement in CXCL12/CXCR4 signaling in differentiated neurons, we studied CXCR7 protein expression in human brain and cultured neurons. Methodology/Principal Findings: Immunohistochemistry and RT-PCR analyses of cortex and hippocampus from control and HIV-positive subjects provided the first evidence of CXCR7 protein expression in human adult neurons, under normal and pathological conditions. Furthermore, confocal microscopy and binding assays in cultured neurons show that CXCR7 protein is mainly located into cytoplasm, while little to no protein expression is found on neuronal plasma membrane. Interestingly, specific CXCR7 ligands that inhibit CXCL12 binding to CXCR7 do not alter CXCR4-activated survival signaling (pERK/pAkt) in rat cortical neurons. Neuronal CXCR7 co-localizes to some extent with the endoplasmic reticulum marker ERp29, but not with early/late endosome markers. Additionally, large areas of overlap are detected in the intracellular pattern of CXCR7 and CXCR4 expression. Conclusions/Significance: Overall, these results implicate CXCR4 as the main CXCL12 signaling receptor on the surface o

    Omeostasi del calcio in cellule neuronali ed endocrine: ruolo dello ione nella tossicita' e nella differenziazione cellulare

    No full text
    Dottorato di ricerca in neuropsicofarmacologia e tossicologia. 6. ciclo. A.a. 1990-93. Coordinatore A. Marino. Tutore G. SchettiniConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
    corecore