469 research outputs found

    Combinatorial Effects of Double Cardiomyopathy Mutant Alleles in Rodent Myocytes: A Predictive Cellular Model of Myofilament Dysregulation in Disease

    Get PDF
    Inherited cardiomyopathy (CM) represents a diverse group of cardiac muscle diseases that present with a broad spectrum of symptoms ranging from benign to highly malignant. Contributing to this genetic complexity and clinical heterogeneity is the emergence of a cohort of patients that are double or compound heterozygotes who have inherited two different CM mutant alleles in the same or different sarcomeric gene. These patients typically have early disease onset with worse clinical outcomes. Little experimental attention has been directed towards elucidating the physiologic basis of double CM mutations at the cellular-molecular level. Here, dual gene transfer to isolated adult rat cardiac myocytes was used to determine the primary effects of co-expressing two different CM-linked mutant proteins on intact cardiac myocyte contractile physiology. Dual expression of two CM mutants, that alone moderately increase myofilament activation, tropomyosin mutant A63V and cardiac troponin mutant R146G, were shown to additively slow myocyte relaxation beyond either mutant studied in isolation. These results were qualitatively similar to a combination of moderate and strong activating CM mutant alleles αTmA63V and cTnI R193H, which approached a functional threshold. Interestingly, a combination of a CM myofilament deactivating mutant, troponin C G159D, together with an activating mutant, cTnIR193H, produced a hybrid phenotype that blunted the strong activating phenotype of cTnIR193H alone. This is evidence of neutralizing effects of activating/deactivating mutant alleles in combination. Taken together, this combinatorial mutant allele functional analysis lends molecular insight into disease severity and forms the foundation for a predictive model to deconstruct the myriad of possible CM double mutations in presenting patients

    Modulation of Cardiac Performance by Motor Protein Gene Transfer

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75444/1/annals.1420.011.pd

    Genetic Engineering and Therapy for Inherited and Acquired Cardiomyopathies

    Full text link
    The cardiac myofilaments consist of a highly ordered assembly of proteins that collectively generate force in a calcium-dependent manner. Defects in myofilament function and its regulation have been implicated in various forms of acquired and inherited human heart disease. For example, during cardiac ischemia, cardiac myocyte contractile performance is dramatically downregulated due in part to a reduced sensitivity of the myofilaments to calcium under acidic pH conditions. Over the last several years, the thin filament regulatory protein, troponin I, has been identified as an important mediator of this response. Mutations in troponin I and other sarcomere genes are also linked to several distinct inherited cardiomyopathic phenotypes, including hypertrophic, dilated, and restrictive cardiomyopathies. With the cardiac sarcomere emerging as a central player for such a diverse array of human heart diseases, genetic-based strategies that target the myofilament will likely have broad therapeutic potential. The development of safe vector systems for efficient gene delivery will be a critical hurdle to overcome before these types of therapies can be successfully applied. Nonetheless, studies focusing on the principles of acute genetic engineering of the sarcomere hold value as they lay the essential foundation on which to build potential gene-based therapies for heart disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72315/1/annals.1380.033.pd

    pH-Responsive Titratable Inotropic Performance of Histidine-Modified Cardiac Troponin I

    Get PDF
    AbstractCardiac troponin I (cTnI) functions as the molecular switch of the thin filament. Studies have shown that a histidine button engineered into cTnI (cTnI A164H) specifically enhances inotropic function in the context of numerous pathophysiological challenges. To gain mechanistic insight into the basis of this finding, we analyzed histidine ionization states in vitro by studying the myofilament biophysics of amino acid substitutions that act as constitutive chemical mimetics of altered histidine ionization. We also assessed the role of histidine-modified cTnI in silico by means of molecular dynamics simulations. A functional in vitro analysis of myocytes at baseline (pH 7.4) indicated similar cellular contractile function and myofilament calcium sensitivity between myocytes expressing wild-type (WT) cTnI and cTnI A164H, whereas the A164R variant showed increased myofilament calcium sensitivity. Under acidic conditions, compared with WT myocytes, the myocytes expressing cTnI A164H maintained a contractile performance similar to that observed for the constitutively protonated cTnI A164R variant. Molecular dynamics simulations showed similar intermolecular atomic contacts between the WT and the deprotonated cTnI A164H variant. In contrast, simulations of protonated cTnI A164H showed various potential structural configurations, one of which included a salt bridge between His-164 of cTnI and Glu-19 of cTnC. This salt bridge was recapitulated in simulations of the cTnI A164R variant. These data suggest that differential histidine ionization may be necessary for cTnI A164H to act as a molecular sensor capable of modulating sarcomere performance in response to changes in the cytosolic milieu

    Stability of the contractile assembly and Ca 2+ - activated tension in adenovirus infected adult cardiac myocytes

    Full text link
    Adenovirus-mediated gene transfer into adult cardiac myocytes in primary culture is a potentially useful method to study the structure and function of the contractile apparatus. However, the consequences of adenovirus infection on the highly differentiated state of the cultured myocyte have not been determined. We report here a detailed analysis of myofilament structure and function over time in primary culture and after adenovirus infection. Adult rat ventricular myocytes in primary culture were infected with a recombinant adenovirus vector expressing either the LacZ or alkaline phosphatase reporter gene. Control and infected myocytes were collected at days 0-7 post-isolation/infection, and myofilament isoform expression was determined by SDS-PAGE and Western blot. Laser scanning densitometry showed that the α- to β-myosin heavy chain ratio, the stoichiometry of the myosin light chains and the expression of the adult troponin T isoform did not change over time in culture or with adenovinus treatment. Importantly, examination of Ca 2+ -activated tension in single myocytes showed no change in the shape or position of the tension-pCa relationship in the control and adenovirus infected myocytes during primary culture. These results indicate that the structure and function of adult cardiac myocytes are stable in short term primary culture and are not affected by adenovirus infection per se, and therefore provide the foundation for the use of adenovirus-mediated myofilament gene transfer to study contractile apparatus structure and function in adult cardiac myocytes.ain.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45333/1/11010_2004_Article_152664.pd

    The Impact of an Intense Cyclone on Short-Term Sea Ice Loss in a Fully Coupled Atmosphere-Ocean-Ice Model

    Get PDF
    AbstractArctic cyclones may be associated with periods of locally enhanced sea ice loss during the summer, and some studies have found that an intense cyclone in August 2012 resulted in a rapid sea ice retreat. This study uses a coupled atmosphere‐ocean‐ice model (Navy‐ESPC) to explore the relationship between the 2012 cyclone and short‐term sea ice melting. There are two mechanisms of cyclone‐induced melting in Navy‐ESPC: turbulent mixing of a warm layer located at 15‐ to 35‐m depth increases bottom melting and warm air advection by the strong surface winds increases surface melting. Although the rate of sea ice melt is substantially increased in association with the cyclone, this effect is confined to a relatively small region and only lasts for a few days. There is no clear signature of the cyclone on the overall Arctic sea ice extent in Navy‐ESPC

    A Cohort Study of the Milk Microbiota of Healthy and Inflamed Bovine Mammary Glands From Dryoff Through 150 Days in Milk

    Get PDF
    The objective of this longitudinal cohort study was to describe the milk microbiota of dairy cow mammary glands based on inflammation status before and after the dry period. Individual mammary quarters were assigned to cohorts based on culture results and somatic cell count (SCC) at dryoff and twice in the first 2 weeks post-calving. Mammary glands that were microbiologically negative and had low SCC (< 100,000 cells/mL) at all 3 sampling periods were classified as Healthy (n = 80). Microbiologically negative mammary glands that had SCC ≥150,000 cells/mL at dryoff and the first post-calving sample were classified as Chronic Culture-Negative Inflammation (CHRON; n = 17). Quarters that did not have both culture-negative milk and SCC ≥ 150,000 cells/mL at dryoff but were culture-negative with SCC ≥ 150,000 at both post-calving sampling periods were classified as Culture-Negative New Inflammation (NEWINF; n = 6). Mammary glands with bacterial growth and SCC ≥ 150,000 cells/mL at all 3 periods were classified as Positive (POS; n = 3). Milk samples were collected from all enrolled quarters until 150 days in milk and subjected to microbiota analysis. Milk samples underwent total DNA extraction, a 40-cycle PCR to amplify the V4 region of the bacterial 16S rRNA gene, and next-generation sequencing. Healthy quarters had the lowest rate of PCR and sequencing success (53, 67, 83, and 67% for Healthy, CHRON, NEWINF, and POS, respectively). Chao richness was greatest in milk collected from Healthy quarters and Shannon diversity was greater in milk from Healthy and CHRON quarters than in milk collected from glands in the NEWINF or POS cohorts. Regardless of cohort, season was associated with both richness and diversity, but stage of lactation was not. The most prevalent OTUs included typical gut- and skin-associated bacteria such as those in the phylum Bacteroidetes and the genera Enhydrobacter and Corynebacterium. The increased sequencing success in quarters with worse health outcomes, combined with the lack of bacterial growth in most samples and the high PCR cycle number required for amplification of bacterial DNA, suggests that the milk microbiota of culture-negative, healthy mammary glands is less abundant than that of culture-negative glands with a history of inflammation
    corecore