14 research outputs found

    Genome wide identification of transcriptional targets of Foxa2 in midbrain dopaminergic cells by ChIP-Seq

    Get PDF
    Midbrain dopaminergic (mDA) neurons are involved in the regulation of movement and behavior, and their loss causes severe neurological disorders, such as Parkinson's disease. Foxa1 and Foxa2 (Foxa1/2), members of the Foxa family of forkhead/winged helix transcription factors, are expressed in mDA neurons throughout their development and display overlapping functions. Previously, it has been shown that Foxa1/2 regulate specification and differentiation of mDA neuron development. During specification, Foxa1/2 are required for the expression of Lmx1a, an intrinsic determinant of mDA identity. Recent data strongly suggests that Foxa2 cooperate with Lmx1a and Nurr1 (Nr4a2) in subsequent feed forward loops to regulate differentiation of mDA neurons. However, Foxa2 regulated direct targets and the mechanisms underlying its roles in mDA development are largely unknown. In this study, we performed chromatin immunoprecipitation (ChIP) and massively parallel Illumina 2G sequencing (ChIP-seq) using in vitro and in vivo DA systems. We produced a genome wide profile of Foxa2 binding sites at two stages of mDA neuron development: specification (in vitro), and differentiation (E12.5 and E14.5 in vivo tissue). Foxa2 binding was observed on known regulated elements, the Shh brain enhancer and the Foxa2 floor plate enhancer in both in vivo and in vitro data sets. Validation of candidate targets was carried out by independent in vivo ChIP-qPCR analysis and reverse transcriptase-qPCR expression assays using ventral midbrain tissue from both wild type and transgenic Foxa1;Foxa2 null mice. Furthermore, genomic regions in the Lmx1a and Lmx1b loci identified in our ChIP-seq analysis were validated for enhancer activity by transgenic LacZ reporter mice. These results strongly suggest that Foxa2 directly regulates the Lmx1a and Lmx1b enhancers emphasizing its key role in mDA specification. In addition, luciferase reporter assays in P19 cells demonstrate the combinatorial role of Foxa2 with Lmx1a and/or Nurr1 in regulating candidate enhancer regions of genes expressed in mDA neurons. These results confirm the quality of our data sets in predicting Foxa2 regulated target genes

    A genetic variant of the Wnt receptor LRP6 accelerates synapse degeneration during aging and in Alzheimer's disease

    Get PDF
    Synapse loss strongly correlates with cognitive decline in Alzheimer's disease (AD), but the underlying mechanisms are poorly understood. Deficient Wnt signaling contributes to synapse dysfunction and loss in AD. Consistently, a variant of the LRP6 receptor, (LRP6-Val), with reduced Wnt signaling, is linked to late-onset AD. However, the impact of LRP6-Val on the healthy and AD brain has not been examined. Knock-in mice, generated by gene editing, carrying this Lrp6 variant develop normally. However, neurons from Lrp6-val mice do not respond to Wnt7a, a ligand that promotes synaptic assembly through the Frizzled-5 receptor. Wnt7a stimulates the formation of the low-density lipoprotein receptor-related protein 6 (LRP6)-Frizzled-5 complex but not if LRP6-Val is present. Lrp6-val mice exhibit structural and functional synaptic defects that become pronounced with age. Lrp6-val mice present exacerbated synapse loss around plaques when crossed to the NL-G-F AD model. Our findings uncover a previously unidentified role for Lrp6-val in synapse vulnerability during aging and AD

    A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia

    Get PDF
    Acute myeloid leukemia (AML) is an aggressive cancer with a poor prognosis, for which mainstream treatments have not changed for decades. To identify additional therapeutic targets in AML, we optimize a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screening platform and use it to identify genetic vulnerabilities in AML cells. We identify 492 AML-specific cell-essential genes, including several established therapeutic targets such as DOT1L\textit{DOT1L}, BCL2\textit{BCL2}, and MEN1\textit{MEN1}, and many other genes including clinically actionable candidates. We validate selected genes using genetic and pharmacological inhibition, and chose KAT2A\textit{KAT2A} as a candidate for downstream study. KAT2A\textit{KAT2A} inhibition demonstrated anti-AML activity by inducing myeloid differentiation and apoptosis, and suppressed the growth of primary human AMLs of diverse genotypes while sparing normal hemopoietic stem-progenitor cells. Our results propose that KAT2A inhibition should be investigated as a therapeutic strategy in AML and provide a large number of genetic vulnerabilities of this leukemia that can be pursued in downstream studies.This work was funded by the Kay Kendall Leukaemia Fund (KKLF) and the Wellcome Trust (WT098051). G.S.V. is funded by a Wellcome Trust Senior Fellowship in Clinical Science (WT095663MA) and work in his laboratory is funded by Bloodwise. C.P. is funded by a Kay Kendall Leukaemia Fund Intermediate Fellowship (KKL888)

    Cholesterol determines the cytosolic entry and seeded aggregation of tau.

    No full text
    Assemblies of tau can transit between neurons, seeding aggregation in a prion-like manner. To accomplish this, tau must cross cell-limiting membranes, a process that is poorly understood. Here, we establish assays for the study of tau entry into the cytosol as a phenomenon distinct from uptake, in real time, and at physiological concentrations. The entry pathway of tau is cell type specific and, in neurons, highly sensitive to cholesterol. Depletion of the cholesterol transporter Niemann-Pick type C1 or extraction of membrane cholesterol renders neurons highly permissive to tau entry and potentiates seeding even at low levels of exogenous tau assemblies. Conversely, cholesterol supplementation reduces entry and almost completely blocks seeded aggregation. Our findings establish entry as a rate-limiting step to seeded aggregation and demonstrate that dysregulated cholesterol, a feature of several neurodegenerative diseases, potentiates tau aggregation by promoting entry of tau assemblies into the cell interior

    UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs.

    No full text
    The histone H3 Lys27-specific demethylase UTX (or KDM6A) is targeted by loss-of-function mutations in multiple cancers. Here, we demonstrate that UTX suppresses myeloid leukemogenesis through noncatalytic functions, a property shared with its catalytically inactive Y-chromosome paralog, UTY (or KDM6C). In keeping with this, we demonstrate concomitant loss/mutation of KDM6A (UTX) and UTY in multiple human cancers. Mechanistically, global genomic profiling showed only minor changes in H3K27me3 but significant and bidirectional alterations in H3K27ac and chromatin accessibility; a predominant loss of H3K4me1 modifications; alterations in ETS and GATA-factor binding; and altered gene expression after Utx loss. By integrating proteomic and genomic analyses, we link these changes to UTX regulation of ATP-dependent chromatin remodeling, coordination of the COMPASS complex and enhanced pioneering activity of ETS factors during evolution to AML. Collectively, our findings identify a dual role for UTX in suppressing acute myeloid leukemia via repression of oncogenic ETS and upregulation of tumor-suppressive GATA programs

    LMX1B Is Part of a Transcriptional Complex with PSPC1 and PSF

    Get PDF
    The LIM homeodomain transcription factor Lmx1b is essential for the development of the isthmic organizer and mesodiencephalic dopaminergic neurons. The uncoupling of Pitx3 and Th expression, in the Lmx1b null mutant, suggests that Lmx1b may act as a positional activator of the mdDA domain, eventually leading to properly differentiating mdDA neurons. In this study, we aimed to elucidate how Lmx1b functions mechanistically in this developmental process, by searching for molecular interactors of Lmx1b at the protein level. Initially, affinity-purification of LMX1B-HIS overexpressed protein in MN9D dopaminergic cells followed by mass-spectrometry analysis, resulted in the identification of PSPC1 protein as a possible binding partner of LMX1B. Subsequent immunoprecipitation experiments revealed an interaction between LMX1B and PSPC1 in a larger protein complex also containing PSF. This complex was observed in vitro and in vivo, and we hypothesize that, via PSF and PSPC1, LMX1B may be part of the previously identified Nurr1 transcriptional complex wherein interaction with the co-repressor PSF and the transcription factor Pitx3 is needed to drive expression of Nurr1 target genes in specifying the dopaminergic phenotype. Furthermore, we identified GRLF1, DHX9, MYO1C, HSP70 and TMPO as potential LMX1B interactors. DHX9 and GRLF1 are highly expressed in the developing mdDA neuronal field, and GRLF1 and MYO1C have both been linked to neurite outgrowth. The identification of these proteins suggests that Lmx1b may act directly in the transcriptional activation of Nurr1 target genes and be involved in other processes like neurite outgrowth as well
    corecore