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Midbrain dopaminergic (mDA) neurons are involved in the regulation of 

movement and behavior, and their loss causes severe neurological disorders, such as 

Parkinson's disease. Foxa1 and Foxa2 (Foxa1/2), members of the Foxa family of 

forkhead/winged helix transcription factors, are expressed in mDA neurons throughout 

their development and display overlapping functions. Previously, it has been shown that 

Foxa1/2 regulate specification and differentiation of mDA neuron development. During 

specification, Foxa1/2 are required for the expression of Lmx1a, an intrinsic determinant 

of mDA identity. Recent data strongly suggests that Foxa2 cooperate with Lmx1a and 

Nurr1 (Nr4a2) in subsequent feed forward loops to regulate differentiation of mDA 

neurons. However, Foxa2 regulated direct targets and the mechanisms underlying its 

roles in mDA development are largely unknown. 

In this study, we performed chromatin immunoprecipitation (ChIP) and massively 

parallel Illumina 2G sequencing (ChIP-seq) using in vitro and in vivo DA systems. We 

produced a genome wide profile of Foxa2 binding sites at two stages of mDA neuron 

development: specification (in vitro), and differentiation (E12.5 and E14.5 in vivo tissue). 

Foxa2 binding was observed on known regulated elements, the Shh brain enhancer and 

the Foxa2 floor plate enhancer in both in vivo and in vitro data sets. Validation of 

candidate targets was carried out by independent in vivo ChIP-qPCR analysis and reverse 

transcriptase-qPCR expression assays using ventral midbrain tissue from both wild type 

and transgenic Foxa1;Foxa2 null mice. Furthermore, genomic regions in the Lmx1a and 

Lmx1b loci identified in our ChIP-seq analysis were validated for enhancer activity by 

transgenic LacZ reporter mice. These results strongly suggest that Foxa2 directly 

regulates the Lmx1a and Lmx1b enhancers emphasizing its key role in mDA 



 5 

specification. In addition, luciferase reporter assays in P19 cells demonstrate the 

combinatorial role of Foxa2 with Lmx1a and/or Nurr1 in regulating candidate enhancer 

regions of genes expressed in mDA neurons. These results confirm the quality of our data 

sets in predicting Foxa2 regulated target genes. 



 6 

Acknowledgements 
 

 

Firstly, I would like to thank my supervisor for providing me with an interesting 

and challenging project and for her support throughout this process. I would like to thank 

all past and present members of the Ang laboratory; I would especially like to thank 

Simon, Martin and Neal for their encouraging discussions and support. I would not have 

been able to achieve any of my goals if it were not for their help and friendship. I would 

also like to thank further Julie, Martin and Simon for sharing their data with me. Finally. I 

would also like to thank members of the Briscoe and Wilkinson labs for their suggestions 

and for their reagents.   

I would like to acknowledge Diogo Castro and Nicky Harker for their advice 

regarding the ChIP experiments performed in this project. I have to thank my mid-term 

report examiners Drs Francois Guillemot and Robin Lovell-Badge for inspiring 

discussions and insightful comments regarding my project. Finally I would like to thank 

my family and Eleanna who always supported me throughout my studies and encouraged 

me when work in the laboratory was hard and always reminded me of the light at the end 

of the tunnel. 



 7 



 8 

Table of Contents  

 
Acknowledgements............................................................................................................ 6 

Index ................................................................................................................................ 21 

1. Introduction................................................................................................................ 23 

1.1 Early neural tube patterning lead to create functionally diverse compartments24 

1.2 The IsO and its role in midbrain development.................................................. 27 

1.3 The Floor plate.................................................................................................. 31 

1.4 The midbrain DA neurons ................................................................................ 33 

1.4.1 Dopamine ............................................................................................. 33 

1.4.2 The midbrain DA populations.............................................................. 34 

1.4.3 Midbrain DA neurons and Parkinson’s disease ................................... 36 

1.4.4 The development of midbrain DA neurons (induction and molecular 
specification) ........................................................................................ 37 

1.4.4.1 Induction of midbrain DA neurons by signaling molecules .. 38 

1.4.4.1.1 Shh........................................................................................................................... 38 
1.4.4.1.2 Fgf8 ......................................................................................................................... 38 
1.4.4.1.3 Wnt1 ........................................................................................................................ 39 

1.4.4.2 Molecular specification.......................................................... 40 

1.4.4.2.1 The LIM-homeodomain transcription factors Lmx1a and Lmx1b ......................... 40 
1.4.4.2.2 The homeodomain transcription factors En1 & En2............................................... 41 
1.4.4.2.3 Msx1........................................................................................................................ 42 
1.4.4.2.4 Neurogenin 2 (Neurog2) ......................................................................................... 43 
1.4.4.2.5 Nurr1 ....................................................................................................................... 43 
1.4.4.2.6 Pitx3 ........................................................................................................................ 44 
1.4.4.2.7 The Forkhead box transcription factors Foxa1 and Foxa2...................................... 45 
1.4.5 How to make a midbrain DA neuron in vitro....................................... 45 

1.5 The Forkhead transcription factors ................................................................... 48 

1.5.1 History of the Forkhead genes ............................................................. 48 



 9 

1.5.2 Control of Foxa2 expression within the floor plate.............................. 50 

1.5.3 Role for Foxa2 in midbrain DA neuron development.......................... 52 

1.5.4 Foxa role in regulation of gene expression .......................................... 54 

1.5.4.1 Nucleosome positioning and Chromatin opening .................. 54 

1.5.4.2 Foxa function revealed by genome wide analysis of its 
recruitment to chromatin ........................................................ 55 

1.5.4.2.1 Chromatin immuno-precipitation ............................................................................ 55 
1.5.4.2.2 Chromosome wide analysis of Foxa1 targets in breast and prostate cancer models58 
1.5.4.2.3 Foxa2 function revealed by ChIP-Seq analysis....................................................... 59 

1.6 Aim of project ................................................................................................... 61 

2. Materials and Methods............................................................................................... 62 

2.1 In Situ Hybridization......................................................................................... 62 

2.2 Immunohistochemistry ..................................................................................... 62 

2.3 Differentiation of ES Cells................................................................................ 63 

2.4 Chromatin immunoprecipitation of in vitro and in vivo samples ..................... 63 

2.5 Real-time qPCR ................................................................................................ 65 

2.6 ChIP followed by high throughput sequencing ................................................ 65 

2.7 Peak calling using a model based analysis of ChIP-seq (MACS) .................... 66 

2.8 Motif analysis.................................................................................................... 67 

2.9 Gene Ontology (GO) analysis........................................................................... 67 

2.10 Generation and genotyping of mutant animals. ............................................... 68 

2.11 RNA extraction ................................................................................................ 69 

2.12 Reverse transcriptase qPCR analysis ............................................................... 69 

2.13 Illumina Array Hybridization........................................................................... 70 

2.14 Luciferase Assay (Promega) ............................................................................ 70 

2.15 Generation of Reporter Constructs................................................................... 71 

2.16 Production and genotyping of transgenic mice ................................................ 72 

2.17 Whole-mount β-galactosidase and in situ hybridization .................................. 72 



 10 

3. Results........................................................................................................................ 73 

3.1 Genome wide analysis of Foxa2 binding in an in vitro model for midbrain DA 
progenitors........................................................................................................ 73 

3.1.1 Defining the in vitro midbrain DA progenitor model .......................... 74 

1.1.1.1.1 Tuj1 ......................................................................................................................... 80 
3.1.1.1 Day 5 of in vitro differentiation of NesE-Lmx1a transgenic Es 

cells is the best time point to harvest mDA progenitors for 
ChIP-Seq ................................................................................ 77 

3.1.2 Identification and characterization of Foxa2 DNA binding in vitro .... 80 

3.1.2.1 Identification of Foxa2 DNA binding events......................... 80 

3.1.2.2 DNA binding motifs enriched in our data set ........................ 84 

3.1.2.3 Characterizing the locations of the high confidence peaks.... 86 

3.1.2.4 Validation of Foxa2 in vitro binding events using E12.5 mouse 
ventral midbrain tissue by ChIP-qPCR.................................. 89 

3.1.2.5 Overlap of ChIP-Seq data with microarray expression data.. 90 

3.1.2.6 GO term analysis of Foxa2 DE target genes identified in vitro
 91 

3.1.2.7 E-box motif is enriched in regions associated with up regulated 
genes involved in neuron development.................................. 97 

3.1.2.8 Otx2: a possible cofactor for Foxa2 function in DA progenitor 
specification ........................................................................... 98 

3.1.2.9 Predictions of physical interaction of transcription factors 
regulated by Foxa2 in vitro .................................................. 104 

3.1.2.10 Identification of Lmx1a and Lmx1b regulatory elements.... 106 

3.1.3 Identification and characterization of Foxa2 binding events in vivo . 113 

3.1.3.1 Foxa2 ChIP-seq performed on E12.5 and E14.5 ventral 
midbrain tissue ..................................................................... 113 

3.1.3.2 Characterization of ChIP-Seq peaks identified using E12.5 
ventral midbrain tissue ......................................................... 119 

3.1.3.3 Characterization of ChIP-seq peaks identified using E14.5 
ventral midbrain tissue ......................................................... 121 



 11 

3.1.3.4 Overlap of ChIP-Seq lists with microarray time course 
expression assays ................................................................. 123 

3.1.3.5 Foxa2 binding profile of peaks associated with early and late 
onset genes ........................................................................... 124 

3.1.3.6 GO term analysis reflects Foxa2 possible functions during 
mDA neuron differentiation................................................. 129 

3.1.3.7 Validation of late onset gene targets in Nestin-Cre Foxa1/2 flox 
mutant mice.......................................................................... 137 

3.1.3.8 Prediction of physical interaction of transcription factors 
regulated by Foxa2 in vivo ................................................... 138 

3.1.3.9 Close correlation of Foxa2 binding events with Gli1 bound 
regions .................................................................................. 139 

3.1.3.10 Differential binding of Foxa2 on promoters driving the 
expression of the DA synthesis enzymes TH and AADC.... 142 

3.1.3.11 Luciferase enhancer analysis of Foxa2 bound regions suggests 
the requirement of co-factors ............................................... 145 

3.1.3.12 Corin and Slit2 are affected in the Shh-Cre Lmx1a 
(dreher)/Lmx1b Flox double mutant mice ........................... 148 

4. Discussion ................................................................................................................ 150 

4.1 Foxa2 genomic recruitment at distant regions from the TSS ......................... 150 

4.2 Possible functions of Foxa2 during the specification, and differentiation of 
midbrain DA neurons revealed by GO term analysis .................................... 152 

4.3 Foxa2 function regulated by co-factors .......................................................... 153 

4.3.1 E-box binding proteins may cooperate with Foxa2 in early specification 
and neurogenesis of midbrain DA neurons ........................................ 153 

4.3.2 Otx2 co-regulates a subset of Foxa2 target genes .............................. 155 

4.3.3 Lmx1a cooperates with Foxa2 to regulate the specification and 
development of midbrain DA neurons ............................................... 158 

4.4 Conclusions from of Lmx1a and Lmx1b regulatory elements ....................... 159 

4.5 Foxa2 roles in coordinating Shh signaling pathway....................................... 160 

4.6 Concluding ideas............................................................................................. 162 

4.6.1 The affinity model .............................................................................. 162 



 12 

4.6.2 Combinatorial control and feed-forward loops .................................. 164 

4.7 Appendix A..................................................................................................... 169 

4.8 Appendix B ..................................................................................................... 171 

4.9 Appendix C ..................................................................................................... 176 

4.10 Appendix D .................................................................................................... 180 

Bibliography .................................................................................................................. 188 

 

 
LIST OF FIGURES 

Figure 1-1: Compartmentalisation of the neural tube. The anterior region of the neural 

tube forms specialised vesicles along the anterior-posterior axis and regions of the 

adult brain are derived from these vesicles (Adapted from Gilbert, 2003). ............. 25 

Figure 1-2:The molecular code defining the midbrain hindbrain boundary (MHB). ....... 30 

Figure 1-3: Biosynthesis of dopamine neurotransmitter................................................... 34 

Figure 1-4:The Nigrostriatal Pathway. ............................................................................. 36 

Figure 1-5: TH expressing neurons derived from ES cells............................................... 47 

Figure 1-6: Schematic representation of functional domains present in Foxa1–3............ 49 

Figure 1-7: Schematic of the notochord and floor plate showing the transcriptional 

cascade resulting in Shh expression.......................................................................... 51 

Figure 1-8:Foxa2 expression during mouse ventral midbrain development. ................... 53 

Figure 1-9: An overview of the chromatin immuno-precipitation (ChIP) procedure....... 57 

Figure 3-1: Foxa2 and Lmx1a expression after 5 days of in vitro monolayer 

differentiation of NesE-Lmx1a transgenic ES cells.................................................. 75 

Figure 3-2: Expression profile of neurons generated at day 8 (D8) of in vitro 

differentiation of NesE-Lmx1a transgenic Es cells. ................................................. 76 

Figure 3-3: Expression profile of neurons generated from the in vitro differentiation of 

NesE-GFP transgenic Es cells. ................................................................................. 77 

Figure 3-4: Microarray analysis of the expression profile of NesE-Lmx1a ES cells during 

differentiation towards midbrain DA progenitors..................................................... 78 



 13 

Figure 3-5:ChIP experiments of chromatin from D5 in vitro differentiated mDA 

progenitors validating the positive control regions, Shh brain enhancer and the 

Foxa2 floor plate enhancer using Foxa2 antiserum. ................................................. 79 

Figure 3-6: Occupancy of Shh and Foxa2 conserved regulatory elements by Foxa2. ..... 82 

Figure 3-7: Occupancy of Lmx1a and Lmx1b conserved genomic elements by Foxa2. . 83 

Figure 3-8: De novo motifs identified from the ChIP-seq analysis. ................................. 85 

Figure 3-9: Percentage of binding sites at various distances from and within genes. 

Recruitment at distal regions from or within genes is a general characteristic of 

Foxa2 binding. 47% of peaks identified are within genes. ....................................... 87 

Figure 3-10: Characteristics of Foxa2 genome wide DNA binding events (in vitro)....... 89 

Figure 3-11: Genomic regions validated for Foxa2 binding by an independent ChIP-

qPCR assay. ChIP was performed on chromatin extracted from ventral midbrain of 

E12.5 mouse embryos. All 15 regions tested are enriched compared to negative 

control regions. Error bars represent SEM. Each ChIP was performed on chromatin 

samples from three biological replicates, and enrichment Foxa2 bound regions over 

the negative regions in the ChIP samples was statistically significant (* P value < 

0.05). ......................................................................................................................... 90 

:Figure 3-12: Gene ontology (GO) categories showing the most enriched biological 

processes of up regulated candidate targets in the system between D3.5 and D5 of in 

vitro differentiation. .................................................................................................. 92 

Figure 3-13: Gene ontology (GO) categories showing the most enriched biological 

processes of down regulated candidate targets between D3.5 and D5 of in vitro 

differentiation............................................................................................................ 93 

Figure 3-14: Validation of Foxa2 targets in ventral midbrain progenitors of 

En1Cre/+;Foxa1flox/flox;Foxa2flox/flox mice at E10.5. ..................................................... 95 

Figure 3-15: Validation of ChIP-seq results by independent ChIP-qPCR experiments 

performed using chromatin from E12.5 mouse ventral midbrain............................. 97 

Figure 3-16: Gene ontology (GO) categories showing the most enriched biological 

processes of up regulated candidate targets between D3.5 and D5 of in vitro 

differentiation containing the enriched E-box sequence identified from the data set.

................................................................................................................................... 98 



 14 

Figure 3-17: ChIP-qPCR experiments performed using chromatin from E12.5 mouse 

ventral midbrain using Otx2 specific antiserum. ...................................................... 99 

Figure 3-18: Possible Foxa2 cofactors predicted by FANTOM4. (A) Table of candidate 

Foxa2 cofactors and their respective gene names. (B) In purple, spheres connected 

by lines indicate the occurrence of physical interactions between the two factors 

sharing each end of the line. ................................................................................... 100 

Figure 3-19: qPCR expression analysis of Foxa2 target genes that may be coregulated by 

Otx2.in ventral midbrains of En1Cre/+;Foxa1flox/flox;Foxa2flox/flox mice at E10.5. (A-C) 

Of the 54 genes with genomic regions bound by Foxa2, that contains an Otx2 DNA 

binding motif 24 are differentially expressed within these mutants.  * Fold change 

between mutant and wild type littermate (Control) is statistically significant with p-

value<0.05............................................................................................................... 103 

Figure 3-20: qPCR expression analysis of Foxa2 regulated target genes that may be 

coregulated by Otx2.in ventral midbrains of En1Cre/+;Otx2flox/flox mice at E10.5. (A-

C) Of the 24 genes regulated by Foxa2, that contains an Otx2 DNA binding motif in 

their candidate regulatory regions, 10 are differentially expressed within these 

mutants and are likely to require an Otx2 input for their proper expression. In this 

case Lmx1a is used as control (Omodei et al., 2008)  * Fold change between mutant 

and wild type littermate (Control) is statistically significant with p-value<0.05. .. 104 

Figure 3-21: Physical interaction identified, using FANTOM4, of Foxa2 regulated 

transcription factors. ............................................................................................... 106 

Figure 3-22 ChIP-qPCR experiments performed using chromatin from E12.5 mouse 

ventral midbrain using Foxa2 specific antiserum. .................................................. 107 

Figure 3-23:LacZ reporter expression driven by the genomic regions identified to be 

bound by Foxa2 within the Lmx1a and Lmx1b gene loci. ..................................... 109 

Figure 3-24: The Foxa2 DNA binding motif within the Lmx1b CR1 is required for 

driving expression to the floor plate of the midbrain and in caudal CNS regions.. 110 

Figure 3-25: Coronal sections through the midbrain of Lmx1a CR2 transgenic mouse at 

E10.5. ...................................................................................................................... 111 

Figure 3-26: Coronal sections through the midbrain of the Lmx1b CR1 transgenic mouse 

at E10.5. .................................................................................................................. 112 



 15 

Figure 3-27:Schematic of E14.5 midbrain dissection limits defining the mDA domain.114 

Figure 3-28:. (A) Schematic of the Shh gene locus extracted from the UCSC genome 

browser. Foxa2 peaks can be observed in the Shh floor plate enhancer region in all 

three data sets. (B) De novo motif enriched in E12 and E14 ChIP-seq data sets 

identified using MEME search engine. The motif is identical to the Foxa2 DNA 

binding motif........................................................................................................... 116 

Figure 3-29: Schematic of the genomic regions bound by Foxa2 in all three data sets. 118 

Figure 3-30: Percentage of binding sites located at various distances from TSS. 

Recruitment at distal regions from the TSS is a general characteristic of Foxa2 

genomic recruitment ............................................................................................... 120 

Figure 3-31. (A) Distribution of peaks within genes. Majority of peaks are distributed 

within intronic regions with 24% identified within the first intron. (B) Distribution 

of the peaks from the nearest downstream gene. Most of the peaks are found 

between 10 and 100 kb away from the nearest downstream gene.......................... 120 

Figure 3-32: Percentage of binding sites located at various distances from TSS. 

Recruitment at distal regions from the TSS is a general characteristic of Foxa2 

genomic recruitment. An increase in recruitment of Foxa2 closer to TSS of 

annotated genes is observed.................................................................................... 121 

Figure 3-33: (A) Distribution of peaks within genes. Majority of peaks are distributed 

within intronic regions with 2o% identified within the first intron. A reduction 

compared to the other two data sets. (B) Distribution of the peaks from the nearest 

downstream gene. Most of the peaks are found between 10 and 100 kb away from 

the nearest downstream gene. ................................................................................. 122 

Figure 3-34:Comparison of genome wide Foxa2 binding profile with DE candidate 

targets. Distribution of peaks within 2 kb of TSS of all annotated genes (Genomic 

binding) and of DE targets reveals that the shift of Foxa2 binding towards the TSS 

of genes in the in vivo data sets is a general characteristic of Foxa2 genomic 

distribution. ............................................................................................................. 124 

Figure 3-35: Gene expression time course assay of in vivo early onset genes (E10-E14). 

Genes presented: Foxa2, Lmx1a, Slit2, Corin, Shh, and Bmp7. ............................ 125 



 16 

Figure 3-36: Gene expression time course assay of in vivo late onset genes (E10-E14). 

Genes presented: TH, Pitx3, and Ddc..................................................................... 126 

Figure 3-37: Gene ontology (GO) categories showing the most enriched biological 

processes of early onset candidate targets identified from the E12 ChIP-seq data set.

................................................................................................................................. 130 

Figure 3-38:Gene ontology (GO) categories showing the most enriched biological 

processes of late onset candidate targets identified from the E12 ChIP-seq data set.

................................................................................................................................. 131 

Figure 3-39 ChIP-qPCR assays performed on chromatin from E12.5 and E14.5 mouse 

ventral midbrain using Foxa2 specific antiserum. (A) Foxa2 binding to  regions 

unique to the E12.5 ChIP-seq list. (B) Foxa2 binding to regions unique to the E14.5 

ChIP-Seq list. (C) Foxa2 binding to regions shared between both the E12.5 and 

E14.5 ChIP-Seq lists. Error bars represent SEM. Each ChIP was performed on 

chromatin samples from three biological replicates. * Enrichment of Foxa2 bound 

regions over the negative region in the ChIP samples was statistically significant (P 

< 0.05). .................................................................................................................... 134 

Figure 3-40:Gene ontology (GO) categories showing the most enriched biological 

processes of late onset candidate targets identified from the E14 ChIP-seq data set.

................................................................................................................................. 135 

Figure 3-41: Gene ontology (GO) categories showing the most enriched biological 

processes of late onset candidate targets unique to the E14 ChIP-seq data set. ..... 136 

Figure 3-42: RT-qPCR validation of Foxa2 targets in ventral midbrain tissue of 

NestinCre/+;Foxa1flox/flox;Foxa2flox/flox mice at E12.5. Expression analysis by qPCR of 

candidate target transcription factors, and genes involved in other functions. * Fold 

change between mutant and wild type littermate (Control) is statistically significant 

with p-value<0.05. .................................................................................................. 137 

Figure 3-43: Physical interaction predicted by FANTOM4, of Foxa2 regulated 

transcription factors. ............................................................................................... 139 

Figure 3-44: Occupancy of Gli2 gene conserved elements by Foxa2. (A) Schematic 

diagram of the Gli2 locus indicating peaks generated by Foxa2 in vitro ChIP-Seq 

experiment (E1-E5). (B) Foxa2 binding sites (in yellow) identified by the Jaspar 



 17 

database and their conservation.(C) ChIP experiments using chromatin from E12.5 

ventral midbrain tissue validating the ChIP-Seq results using Foxa2 anti serum or 

anti-IgG antibody (M: Mock IP). Error bars represent SEM. Each ChIP was 

performed on chromatin samples from three biological replicates, and enrichment of 

all Gli2 elements in the Foxa2 ChIP samples compared with the mock ChIP was 

statistically significant (P < 0.05). .......................................................................... 141 

Figure 3-45: Comparison of the Foxa2 DNA binding domain defined by the Jaspar base 

with Foxa2 bound sequences in the AADC neuronal promoter and the TH promoter.

................................................................................................................................. 143 

Figure 3-46: ChIP-qPCR assays performed on chromatin from E10.5 and E12.5 mouse 

ventral midbrain using Foxa2 specific antiserum. (A) Foxa2 binding to promoter 

regions of the AADC neuronal promoter and the TH promoter at E10.5 (B) Foxa2 

binding to promoter regions of the AADC neuronal promoter and the TH promoter 

at E12.5. Foxa2 binds to both promoter regions only at E12.5 compared to binding 

only to the AADC promoter at E10.5. Error bars represent SEM. Each ChIP was 

performed on chromatin samples from three biological replicates. * Enrichment of 

Foxa2 bound regions over the negative region in the ChIP samples was statistically 

significant (P < 0.05). ............................................................................................. 144 

Figure 3-47: Synergistic relationship of Foxa2 with Lmx1a and Nurr1......................... 146 

Figure 3-48: Foxa2 targets Corin, and Slit2 are affected in the ShhCre/+ 

Lmx1adrdr/Lmx1bfloxflox mouse embryos. ................................................................ 149 

Figure 4-1: Model of possible Foxa2/Otx2 interaction in mDA development. Foxa2 and 

Otx2 may be required to modulate Tgf-beta signaling by regulating it’s components 

Ltbp1, Tgf-βr3, and Bmp7. Furthermore, Foxa2 and Otx2 are required for the 

induction of Lmx1a................................................................................................. 157 

Figure 4-2:Foxa2 coordinates Shh signaling. (1) Foxa2 gene activity induces the 

transcription of Shh within the notochord and subsequent diffusion of the 

morphogenetic Shh protein induces the expression of genes involved in specifying 

the floor plate region in the overlying neural plate (green arrows). Gli2, which is 

known to mediate the primary response of Shh signalling, induces the expression of 

Foxa2 within the presumptive floor plate region. (2) Foxa2 protein induces the 



 18 

transcriptional activation of Shh and Foxa1 in this region. Foxa2 and possibly Foxa1 

are involved in the down-regulation of Gli2 gene expression from the ventral 

midline. (3) Shh signaling induces target genes such as Nkx2.2 and also induces the 

transcription of mediators of the Shh signalling cascade including Ptc, the membrane 

bound Shh receptor. Through this activation of mediators, Foxa2 gene expression is 

induced, therefore creating a positive feedback loop in which both Foxa2 and Shh 

maintain their gene expression within this midline tissue. (3) Foxa2 may directly 

regulate the ventral limit of Nkx2.2, Gli1, Gli2, and Ptc.(Modified from 

Mavromatakis, 2006) .............................................................................................. 161 

Figure 4-3: The affinity model suggests that Foxa2 regulation of transcription may 

depend on the DNA binding motif it identifies on regulatory regions, as well as on 

its concentration in the cell. Lower concentrations are required to induce genes with 

high affinity motifs compared to genes with low affinity motifs within their 

regulatory regions. (Modified from Mango, 2009)................................................. 163 

Figure 4-4: Occupancy of Neurog2 conserved genomic element by Foxa2. (A) Schematic 

diagram of genomic region occupied by Foxa2 down stream of the Neurog2 gene, 

from data obtained by Foxa2 ChIP-Seq experiments on E12.5 ventral midbrain 

tissue. Arrow indicate peak called by peak calling algorithm MACS. (B) Schematic 

diagram indicating the position of the predicted Foxa2 and Lmx1a DNA binding 

sites. ........................................................................................................................ 165 

Figure 4-5: Occupancy of the Nurr1 (Nr4a2) promoter by Foxa2. (A) Schematic diagram 

of the genomic region occupied by Foxa2, from data obtained by Foxa2 ChIP-Seq 

experiments on E12.5 ventral midbrain tissue. Arrow indicates peak called by peak 

calling algorithm MACS. (B-C) Schematic diagram of mouse Nurr1promotes 

indicates the presence of predicted Foxa2 and E-BOX DNA binding motifs. (D) 

Schematic diagram indicates the presence of the predicted E-BOX DNA binding 

motifs within the Human Nurr1 promoter. ............................................................. 167 

Figure 4-6: Combinatorial regulation of mDA specific genes through feed forward loops. 

(1) During specification, Foxa2 induces directly Lmx1b while Otx2 regulates its 

dorsal limit. (2) Foxa2 and Otx2 possibly regulate directly the expression of Lmx1a 

within the floor plate region. (3) Foxa2 in combination with Lmx1a may induce 



 19 

directly Neurog2 (Ngn2) and promote differentiation. (4) Foxa2 together with 

Neurog2 may regulate Nurr1 (Nr4a2) by binding to its promoter. (5) Foxa2 and 

possibly in combination with Lmx1a and Nurr1 positively regulate Pitx3. (6) 

Finally, Foxa2, Nurr1 and Pitx3 are required for the induction of TH by regulating 

directly it’s promoter. (This is a hypothetical series of events during the 

specification and differentiation of mDA neurons that requires further analysis and 

validation). .............................................................................................................. 169 

Figure 4-7: Coronal sections through adult mouse midbrain. In situ hybridization analysis 

of genes identified from the in vivo ChIP-Seq assays. Black area indicates 

expression within the DA area. Look at atlas next.  (Modified from the Allen brain 

atlas)........................................................................................................................ 170 

Figure 4-8: Coronal sections through adult mouse midbrain. Anatomy atlas of the adult 

mouse midbrain. Black region indicates DA population area (SNc, and VTA). 

(Modified from the Allen brain atlas)..................................................................... 171 

Figure 4-9: Gene symbol, names and MGI IDs of genes mentioned in the in vitro ChIP-

Seq analysis............................................................................................................. 173 

Figure 4-10: Genomic regions identified from the in vitro data set and used in ChIP-

qPCR validation analysis using chromatin from E12.5 dissected ventral midbrain.

................................................................................................................................. 175 

Figure 4-11: Gene symbol, names and MGI IDs of genes mentioned in the in vivo ChIP-

Seq analysis............................................................................................................. 177 

Figure 4-12: Genomic regions used in ChIP-qPCR analisys using E12.5, and E14.5 

chromatin from dissected ventral midbrain ............................................................ 178 

Figure 4-13:Analysis of downstream targets of Shh signalling at E10.5 in the Foxa2 CKO 

(conditional knockout) mouse ventral mesencephalon. A-J: Coronal sections of 

E10.5 wild type and Foxa2 CKO embryos. Analysis of the downstream targets of 

Shh signalling revealed that in E10.5 ventral mesencephalon the gene expression 

patterns of all the downstream targets of Shh signalling are shifted ventrally to meet 

the reduced Shh gene expression at the ventral midline. This suggests a possible role 

for Foxa2 in maintaining the expression boundary of these genes. Furthermore, Shh 



 20 

and Foxa1, known downstream targets of Foxa2, are reduced in these mutants. Scale 

bar represents 100µm. ............................................................................................. 182 

 



 21 

Index 
 

 



 22 

 

 

 

 
 

 

 

 

 

 

 

 

 



 23 

1. Introduction 
 

 

The mesencephalon is one of the most interesting regions of the central nervous 

system (CNS), and it provides a good model to study the mechanisms of how neural 

tissues are patterned and subdivided to generate distinct structures. Different neuronal 

populations within the mesencephalon have differing essential functions. The midbrain 

dopaminergic (mDA) neurons are members of this population that play important roles in 

movement control and behavior. These neurons are generated in specific spatial locations 

along both the anterior-posterior and dorsal-ventral axes in response to signals emanating 

from signaling centers positioned along the neural tube. In order to appreciate the 

mechanisms involved in the generation of mDA neurons, it is important to understand the 

events which are critical for the correct specification and patterning of the mesencephalon 

from the primitive neural tube. 
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1.1 Early neural tube patterning lead to create functionally diverse 
compartments  

 
Cells in the neural plate respond to multiple signals originating from primary 

signalling centres (organisers) and finally give rise to the central nervous system (CNS). 

The anterior visceral endoderm (AVE) plays an important role in anterior patterning and 

establishing the anterior limit of the developing embryo. Hensen’s node is another 

organizer that produces tissue which neurolizes the ectoderm and is important for 

maintaining and extending the anterior pattern in the mouse (Beddington and Robertson, 

1999; Stern, 2001; Wurst and Bally-Cuif, 2001). As a result of the signals from these 

organizers the neural plate roles up to form the neural tube and a series of vesicles 

develop in the anterior end of the neural tube indicating the position of the future 

prosencephalon or forebrain, mesencephalon or midbrain, and rhombencephalon or 

hindbrain (Wurst and Bally-Cuif, 2001). 

The prosencephalon undergoes a further subdivision to yield the telencephalon, which 

will give rise to the cerebral hemispheres, and the diencephalons, which will contain the 

thalamus and hypothalamus. The rhombencephalon also undergoes a further subdivision, 

yielding the metencephalon, which gives rise to the cerebellum and the pons, and the 

myelencephalon, which gives rise to the medulla (Figure 1-1). However, the 

mesencephalon does not undergo any further subdivision (Gilbert, 2003).  

After the closing of the neural tube and initial vesicular development of its anterior 

end, the three main domains in the brain premordium are subjected to further structural 

refinement by secondary signaling centres or secondary organizers. Secondary signaling 
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centers can be defined as focal transverse domains with morphogenetic activity across the 

anterior-posterior axis (Echevarría et al., 2003).   

 

 

Figure 1-1: Compartmentalisation of the neural tube. The anterior region of the neural tube forms 

specialised vesicles along the anterior-posterior axis and regions of the adult brain are derived from 

these vesicles (Adapted from Gilbert, 2003). 
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Three regions have been identified as secondary signaling centers in the anterior 

neural tube; the anterior neural ridge (ANR), the zona limitans intrathalamica (ZLI) and 

the isthmic organizer (IsO) (Echevarría et al., 2003; Kiecker and Lumsden, 2005).  

The ANR is a morphologically defined structure located at the junction between the 

most rostral part of the neural plate and non-neural ectoderm. It plays a crucial role in 

patterning the telencephalon (Echevarría et al., 2003). The ZLI is described as a 

compartment and source of local morphogenetic properties, which coincides with a 

surface constriction in the prospective thalamus, separating the dorsal from the ventral 

thalamus (Echevarría et al., 2003; Kiecker and Lumsden, 2004). The IsO, the best 

characterized organizer, is located at the boundary between the midbrain and anterior 

hindbrain (Bally-Cuif and Wassef, 1995). The IsO plays a critical role in inducing and 

polarizing midbrain and anterior hindbrain structures by emitting signals that have 

morphogenetic properties (Echevarría et al., 2003; Simeone, 2000; Wurst and Bally-Cuif, 

2001). The function of the IsO will be discussed in detail below. 

The main subdivisions of the CNS: the forebrain, midbrain, hindbrain and spinal 

cord, are established along the rostrocaudal axis of the neural tube. These events require 

an orchestration of signals emitted from multiple organizing centers within this signaling 

system. Another signaling system of similar complexity is the dorsoventral axis of the 

neural tube and it plays a critical role in establishing cell type diversity within these 

rostrocaudal subdivisions. Antagonistic interactions between ventralizing and dorsalizing 

signals ultimately lead to distinct regions of the neural tube known as the floor plate, the 

roof plate, the basal plate and the alar plate (Echelard Y, 1993; Jessell, 2000; Lee and 
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Jessell, 1999; Martí et al., 1995; Roelink et al., 1995). The floor plate will be discussed in 

detail later in this chapter. 

 
 

1.2  The IsO and its role in midbrain development 

 

The IsO has been identified in all studied vertebrates and is described as a local 

organizer of the embryonic brain. The IsO plays an important role in organizing the 

growth and the ordered rostrocaudal specification of the midbrain and hindbrain 

territories (Wurst and Bally-Cuif, 2001). The position of the IsO has been shown to 

depend on the expression of two homeodomain transcription factors Otx2 and Gbx2.  

Otx2 and Gbx2 are expressed by the headfold stage in the anterior and posterior 

neuroectoderm, respectively (Ang and Rossant, 1994). Genetic analysis of mutant mice 

lacking Otx2 demonstrates the absence of the anterior most regions of the neural tube, 

corresponding to the midbrain and forebrain regions (Acampora et al., 1995; Ang et al., 

1996). This is accompanied with the anterior expansion of Gbx2 expression and 

enlargement of the cerebellum. In contrast, mutant mice lacking Gbx2 protein results in 

the loss of the cerebellum at the expense of midbrain expansion. This is due to ectopic 

posterior expression of Otx2 (Liu and Joyner, 2001a; Martinez-Barbera et al., 2001). It 

has also been reported that Otx genes might cooperate and that a critical threshold of 

OTX proteins is required for regionalization and subsequent patterning of the developing 

brain. Also evidence has been provided that Otx gene dosage is required in controlling 

the boundary of the IsO (Acampora et al., 1997). Ectopic expression studies using either 

Otx2 or Gbx2 have produced similar results (Broccoli et al., 1999; Millet et al., 1999).  
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All these results clearly demonstrate that the IsO is positioned in the MHB 

between the expression domains of Otx2 and Gbx2, and that the correct position of the 

IsO is critical for determining the size of the mesencephalon and metencephalon. 

Recently it has been demonstrated that the establishment and specification of the IsO at 

the MHB is not dependent on the actions of either Otx2 or Gbx2, as genes such as Fgf8 

and Wnt1 normally expressed in a restricted manner at the MHB are still observed in 

Otx2/Gbx2 double mutants. However, they are essential for negatively regulating Fgf8 

and Wnt1, respectively, and thus subdividing the presumptive midhindbrain region into 

two different domains (Figure1-3) (Liu and Joyner, 2001a; Martinez-Barbera et al., 

2001).  

In recent years, studies have demonstrated the inducing capabilities of the IsO. 

Ectopically placing tissue from the MHB region into the host Forebrain can induce a new 

MHB region around the transplanted tissue (Liu and Joyner, 2001a; Nakamura H, 2005). 

Two classes of signaling molecules, Wnts and FGFs are expressed at the MHB. Wnt1 was 

originally identified as an oncogene due to frequent insertions of the mouse mammary 

tumour virus which lead to the over-expression of its transcript (Nusse and Varmus, 

1982), and is first expressed at the first somite stage and by the 6-8 somite stage is 

expressed throughout the presumptive midbrain (Echelard et al., 1994; Wilkinson DG). 

The expression of Wnt1 in the midbrain gradually becomes restricted to the ventral and 

dorsal midlines and to a small semi-circular domain at the posterior limit of the Otx2 

domain (Zervas et al., 2004). Fgf8 is first expressed during gastrulation and is eventually 

restricted to several signaling centers along the anterior-posterior axis (Crossley and 

Martin, 1995). The expression of Fgf8 within the MHB region is restricted posteriorally 
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to the expression of Wnt1, and forms a semi-circular domain of expression around the 

MHB (Crossley and Martin, 1995; Meyers et al., 1998).  

The MHB region is lost in Wnt1 knockout (Wnt1 -/-) embryos demonstrating the 

importance of this signaling molecule (McMahon AP, 1990; McMahon AP, 1992), but 

further studies have shown that Wnt1 is only required for the proliferation and survival of 

these cells (Danielian and McMahon, 1996; McMahon AP, 1992). Furthermore, Wnt1 

does not illustrate the inducing properties of the IsO as demonstrated in gain of function 

studies ( Danielian and McMahon, 1996). 

Fgf8 was demonstrated to posses the inducing capabilities of the IsO. Fgf8-soaked 

beads can transform the anterior forebrain into a MHB region (Crossley et al., 1996; Liu 

et al., 1999; Martinez et al., 1999). The requirement for Fgf8 during the development of 

the MHB was also demonstrated by using Fgf8 conditional knockout mice, as classical 

knockout mice have gastrulation defects (Sun et al., 1999). The loss of Fgf8 from the 

MHB results in the loss of the midbrain and anterior hindbrain (Chi et al., 2003). 

Furthermore, another role for FGF signaling from the IsO has been described in 

zebrafish. Fgf8 signals acting together with the Engrailed genes are important in the 

maintenance of the boundary between the midbrain and hindbrain (Scholpp S, 2003). 
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Signaling molecules from the IsO interact with signals from the floor plate to 

further refine, pattern and specify distinct neuronal populations along its neuraxis. For the 

purpose of this thesis, mechanisms for the specification of midbrain dopaminergic 

neurons will be discussed in following chapters. 

. 

 

 

 

 

 

 

 

Figure 1-2:The molecular code defining the midbrain hindbrain boundary 

(MHB).  

At E10.5the Otx2, Wnt1, Gbx2, Fgf8 and En1 domains of expression define a 

molecular code centered on the MHB. (Modified from Simeone,, 2000) 
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1.3  The Floor plate  

 

The specification of functionally diverse neuronal populations in the CNS depends 

on signaling molecules along the anterior-posterior and dorso-ventral axes. As discussed 

earlier in this chapter, signals coming from signaling centers are responsible for cell type 

specification along the dorso-ventral axis as it is for the anterior-posterior axis. The two 

signaling centers playing a central role in cell type specification along the dorso-ventral 

axis are the roof plate (dorsally) and the floor plate (ventrally). And the interaction of 

these dorsal and ventral signals are responsible for the specification of neurons along this 

axis (Jessell, 2000). 

The floor plate is described as a small group of cells located at the ventral midline of 

the neural tube that influences strongly the development of the vertebrate nervous system 

(Placzek and Briscoe, 2005). The floor plate was originally identified by its morphology 

by W. His, and was described as a group of cells in the ventral midline with an ependimal 

structure and lack of any differentiated neurons (Kingsbury, 1930). The floor plate cells 

participate in governing the specification of glial and neuronal cell types through 

secreting a key signalling molecule Shh (Briscoe and Ericson, 1999; Kessaris et al., 2001; 

Martí et al., 1995; Patten and Placzek, 2000; Placzek and Briscoe, 2005).  

Shh is first expressed in the midline mesoderm of the head at the late streak stages of 

gastrulation, and then extends to the notochord (Echelard et al., 1993). Shh expression 

initiates in the CNS at the ventral midline of the midbrain at 8-somite stage, and extends 

rostrally into the forebrain and caudally into the hindbrain and spinal cord. In the 

hindbrain and spinal cord, Shh expression is restricted to the FP, whereas it extends 

ventrolaterally in the midbrain (Echelard et al., 1993). Gain and loss of function data 



 32 

have demonstrated the requirement of Shh to induce floor plate cells. It has been shown 

in studies where cells transfected with Shh expression vector and placed in close 

proximity with explants from naïve neural plate tissue are able to induce the 

differentiation of floor plate cells and motor neurons (Roelink et al., 1994). This has been 

supported by loss of function data where Shh -/- mice display a complete loss of floor 

plate structures (Chiang C. et al., 1996). It has also been demonstrated that Shh is the 

inductive signal derived from the FP that is responsible for the induction of midbrain 

dopaminergic (DA) and motor neurons (Hynes M. et al., 1995a).  

The Forkhead transcription factor Foxa2 has been shown to be one of the target 

genes of Shh signaling which plays a role as a major regulator of floor plate development 

(Sasaki and Hogan, 1994a; Sasaki et al., 1997; Sasaki et al.). Ectopic expression of Foxa2 

is sufficient to induce ectopic expression of Shh leading to the generation of ectopic floor 

plate structures (Sasaki and Hogan, 1994a). Moreover, Foxa2 loss of function results in 

loss of floor plate due to loss of Shh expression in the notochord (Ang and Rossant, 1994; 

Weinstein et al., 1994). 

 The floor plate has long been thought of as an organizer and involved in 

patterning nearby cells to their destined fates. The floor plate was not known to 

contribute to a specific neuronal population. Recently it was shown that in the midbrain 

this was not the case. Lineage tracing of mDA neurons using Shh-Cre driving the LacZ 

gene has shown that all the mDA neurons are generated from floor plate cells 

(Joksimovic et al., 2009). Moreover, cell sorting experiments coupled with 

immunostainig for DA specific markers using the membrane floor plate marker Corin has 
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further confirmed this finding (Ono et al., 2007). Thus in the ventral midbrain, the floor 

contributes to the mDA population in parallel to performing its patterning functions. 

1.4 The midbrain DA neurons 

 

1.4.1 Dopamine 

Dopamine (DA) belongs to the family of catecholamines (CA), which include 

noradrenalin and adrenaline. It is regarded as one of the classical neurotransmitters of the 

central nervous system. Dopamine, noradrenalin and adrenalin are synthesized from the 

amino acid tyrosine, and the first and rate-limiting step of this biosynthesis is catalyzed 

by the enzyme tyrosine hydroxylase (TH). TH converts tyrosine into L-

dihydroxyphenylalanine (L-DOPA) (Eells, 2003; Levitt et al., 1965; Nagatsu et al.). The 

enzyme L-aromatic amino acid decarboxykase (AADC or Ddc) catalyzes the 

decarboxylation of L-DOPA to form dopamine (Zhou and Palmiter, 1995). The enzymes 

dopamine β-hydroxylase (DBH) can further convert dopamine into noradrenalin by, and 

then to adrenalin by phenylethanolamine N-methyltransferase (Figure 1-3) (Goridis and 

Rohrer, 2002). DA neurons do not produce DBH; therefore, the CA synthesis terminates 

at DA. 
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1.4.2 The midbrain DA populations 

The DA neurons are one of the first systems to be described in detail. This was 

due to the ease of their detection by a histofluorescence method known as formaldehyde-

induced fluorescence (Falck et al., 1962; Goridis and Rohrer, 2002; Hokfelt et al., 1984; 

Zhou and Palmiter, 1995). Distinct subgroups of midbrain DA neurons can be identified 

according to cell body topology and axon connectivity with postsynaptic targets. 

Midbrain DA neurons are located in the substantia nigra (SN), ventral tegmentum (VTA) 

and retrorubral field (RRF), also known as subgroups A8-A10. It is interesting to note 

that the SN is divided into two sub groups: the pars compacta (SNc) and pars reticulata 

Figure 1-3: Biosynthesis of dopamine neurotransmitter. 

 Tyrosine Hydroxylase (TH) is the rate-limiting step of dopamine synthesis and is 

required to hydrolyse tyrosine and produce 
L
-DOPA. L-Aromatic Amino Acid 

Decaboxylase (AADC) then converts 
L
-DOPA into dopamine. (Diagram modified 

from Goridis and Rohrer, 2002) 



 35 

(SNr). The SNc is composed of medium sized cells that are more darkly stained and 

closely spaced compared to the SNr. The SNc cells are mostly DA neurons whereas the 

SNr cells are mostly non-DA cells (Beckstead et al., 1979; Burbach et al., 2003; Goridis 

and Rohrer, 2002). In humans, approximately 75% of the midbrain DA neurons are 

located in the SN and project to the dorsal striatum forming the nigrostriatal pathways, 

which is involved in the control of voluntary motor movement (Figure 1-4) (Wallén and 

Perlmann, 2003; Zhou and Palmiter, 1995). DA neurons located in the VTA project to the 

nucleus acumbens, other limbic brain areas, and the cortex forming the 

mesolimbic/cortical pathways involved in the control of emotion and reward behaviors 

(Tzschentke, 2000; Tzschentke and Schmidt, 2000). 

 

 

 



 36 

 
 

 

 

 

 

 

 

 

1.4.3 Midbrain DA neurons and Parkinson’s disease 

In 1817, James Parkinson first described the clinical manifestations of Parkinson’s 

disease (PD), of which the main symptoms are tremor, bradykinesia, and balance 

disturbances. Depression may also occur, but is less well defined. PD is a progressive 

Figure 1-4:The Nigrostriatal Pathway.  

A horizontal section of the adult rat brain stained with an antibody against tyrosine 

hydroxylase (TH). A dense bundle of fibres project rostro-laterally, beginning from 

the Substantia nigra compacta (SNc) towards the Striatum. VTA: Ventral tegmental 

area. RRF: Retrorubral field. (Kind contribution by Dr. Simon Stott). 
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neurodegenerative disorder that affects 1-2% of the population over 65 years of age. At 

the onset of the disease, a large proportion (70–80%) of DA neurons in the SNc has 

already been lost, resulting in reduced DA synthesis and release from the striatal nerve 

terminals (Hirsch et al., 1988; Jiang et al., 2005; Simon et al., 2003). DA neuron cell 

death is also associated with the presence of cytoplasmic protein aggregates called Lewi 

bodies (Goldman et al., 1983). It remains unclear what causes cell death of the SNc DA 

neurons. However, environmental toxins, ageing, and genetic susceptibility are key 

elements to consider for this disease (Eells, 2003; Hirsch, 1998; Jenner; 1998; Schapira, 

1997). 

The importance of genetic factors involved in Parkinson’s disease has been the 

centre of debate for decades, and an understanding of these genetic factors could hold the 

key to possible therapeutic treatments. Investigations with siblings from patients of 

Parkinson’s disease demonstrate that there is a higher possibility of developing 

Parkinsonian symptoms compared to the siblings of non-affected parents (Pankratz and 

Foroud, 2004), and several genes have now been identified which are considered to have 

the potential to increase the incidence of Parkinson’s disease, such as α-synuclein, parkin 

and DJ-1. 

1.4.4 The development of midbrain DA neurons (induction and molecular 
specification) 

As discussed earlier, the vertebrate nervous system is composed of multiple cell 

types that are organized at specific stereotypic locations along the anterior-posterior and 

dorso-ventral axis.  It has been shown that signaling centers along these axes such as the 

roof plate, floor plate and the IsO play crucial roles in instructing cell fates that will 

characterize the midbrain and hindbrain regions (Ye et al., 1998). A number of secreted 
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factors released from these signaling centers have been shown to modify cell fates along 

their axis of distribution, and this is in agreement with the notion that extracellular 

molecules establish information grids to instruct cell fate changes (Crossley et al., 1996; 

Kiecker and Lumsden; Ye et al., 1998). Such signals are Shh from the floor plate, BMP 

from the roof plate, Fgf8 and Wnt1 from the IsO region. These secreted molecules will be 

discussed in detail below. 

1.4.4.1 Induction of midbrain DA neurons by signaling molecules 

 

1.4.4.1.1 Shh 

Shh expression initiates in the CNS at the ventral midline of the midbrain at 8-

somite stage, and extends rostrally into the forebrain and caudally into the hindbrain and 

spinal cord. In the hindbrain and spinal cord, Shh expression is restricted to the FP, 

whereas it extends ventrolaterally in the midbrain (Echelard et al., 1993). In the 

developing midbrain, DA neurons were first suggested to develop in close proximity to 

the FP, which is also sufficient for the induction of DA neurons in midbrain explant 

cultures and in the dorsal midbrain with an ectopic FP (Hynes M. et al., 1995b). Shh is 

subsequently demonstrated to be the inductive signal derived from the FP that is 

responsible for the induction of DA neurons (Hynes M. et al., 1995a).  

 

 

1.4.4.1.2 Fgf8 

Fgf8 expression is detected in the prospective MHB between E8.0 and E8.5, and 

become restricted to the isthmic constriction at around E9.0 to E9.5 (Crossley and Martin, 
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1995). Fgf8 has been shown to mimic the inducing capabilities of the IsO by 

transforming the anterior forebrain when an Fgf8 source is placed close to it into a MHB 

region (Crossley et al., 1996; Liu et al., 1999; Martinez et al., 1999). Fgf8 signaling has 

been shown to directly regulate Wnt1 and En1/2 expression, which are also implicated in 

the development of midbrain DA neurons. This made it difficult to determine if Fgf8 

directly controls DA development (Crossley et al., 1996; Shamim et al., 1999). A recent 

study of mutant mice carrying different combinations of Fgfr1, Fgfr2, and Fgfr3 

mutations demonstrate redundant contributions of these receptors in receiving signals 

from the IsO and regulating the development of midbrain DA neurons without affecting 

the expression of Wnt1, Shh signaling and neurogenic gene expression in the ventral 

midbrain (Saarimäki-Vire et al., 2007). This suggests a more direct role of Fgf signaling 

in midbrain DA neuron development. 

 

1.4.4.1.3 Wnt1 

Wnt1 has been shown to regulate midbrain development by maintaining En1 

expression (Danielian and McMahon, 1996; McMahon AP, 1992; Wurst et al., 1994). In 

addition to the expression anterior to the isthmus, Wnt1 is also detected in two stripes 

adjacent to the floor plate of the midbrain and overlaps with the region where mDA 

progenitors first appear (Prakash et al., 2006). The function of Wnt1 in mDA neuron 

development has been shown by both in vitro and in vivo studies. Treatment of rat ventral 

midbrain cultures with Wnt1 conditioned media show that Wnt1 is a key regulator for the 

proliferation of mDA progenitors by exhibiting a dose depended increase in TH+ 

neurons. This effect is not specific to mDA progenitors but rather an effect on all ventral 



 40 

midbrain progenitors (Castelo-Branco et al., 2003). The mechanism for this effect has 

been shown to be through the upregulation of cyclins D1 and D3, which promote cell 

cycle progression, and down-regulation of the expression of cell cycle inhibitors p27 and 

p57 (Prakash et al., 2006). Other than the role of Wnt1 in mDA precursor proliferation in 

vitro, it is also required for the proper differentiation of mDA neurons. In Wnt1-/- mutant 

embryos, only very few DA neurons were generated that expressed the mature mDA 

markers Nurr1 and TH, but these cells fail to express Pitx3 (Prakash et al., 2006) 

1.4.4.2 Molecular specification 

Midbrain DA neurons are known to have anatomical and functional differences. 

Despite these differences they share the dopamine biosynthesis and transmission 

machinery. The coordinated expressions of a cascade of transcription factors play key 

roles in these events (Burbach et al., 2003). A few of these transcription factors will be 

discussed here. 

1.4.4.2.1 The LIM-homeodomain transcription factors Lmx1a and Lmx1b 

Lmx1a and Lmx1b are LIM-homeodomain transcription factors. Lmx1a and 

Lmx1b are both expressed in the ventral midbrain and caudal forebrain where midbrain 

DA neurons are generated (Andersson et al., 2006b). Lmx1a transcript and protein are 

first detected in the ventral midbrain at E8.5 and E9 respectively (Andersson et al., 

2006b; Millen et al., 2004). Lmx1a is specifically expressed in midbrain DA progenitors 

and maintained in midbrain DA postmitotic neurons (Andersson et al., 2006b). Lmx1b is 

expressed broadly around the presumptive MHB at E8.5, and becomes restricted to the 

ventral midbrain and caudal forebrain at E9.5 (Guo et al., 2007). 

Lmx1b plays an early essential role in the development of the midbrain by 
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regulating the expression of Fgf8, Wnt1, En1 and Pax2 that are required for the midbrain 

and hindbrain development (Guo et al., 2007; Matsunaga et al., 2002). In the mDA 

system, Lmx1b is proposed to be required for the differentiation and maintenance of 

mDA neurons. The Lmx1b -/- mutant mice developed Th+ neurons that do not express 

the mature midbrain DA neuron marker Pitx3. These Th+ neurons are eventually lost 

during embryonic maturation. These results suggested the presence of two molecular 

cascades during the specification of midbrain DA neurons, one essential for the 

neurotransmitter phenotype and another essential for other midbrain DA neuron 

differentiation aspects (Smidt et al., 2000).  

Lmx1a is both required and sufficient to induce DA neurons in the ventral 

midbrain (Andersson et al., 2006a). Mis-expression of Lmx1a in chick midbrain at HH 

stage 10 extensively induces ectopic DA neurons in the ventral midbrain region, whereas 

siRNA knockdown of Lmx1a reduces postmitotic DA neurons. Lmx1a is both sufficient 

and required for the expression of Msx1 in midbrain DA progenitors. Lmx1a was shown 

to be a much more potent inducer of Th+ neurons than Lmx1b when transfected into 

mouse embryonic stem (mES) cells treated by Shh and Fgf8.  Furthermore a study using 

Lmx1a mouse mutant dreher has shown a significant reduction in midbrain DA neurons. 

These results illustrate the requirement of Lmx1a in midbrain DA neuron differentiation 

(Ono et al., 2007).  

1.4.4.2.2 The homeodomain transcription factors En1 & En2 

Engrailed 1 (En1) and Engrailed 2 (En2) are homeobox transcription factors with 

a high sequence homology (Joyner et al., 1985; Joyner and Martin, 1987). En1 and En2 

start to be expressed during the early hours of somite formation in the presumptive MHB 
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region (Davis and Joyner, 1988). En genes play an early role in maintaining the 

expression of Fgf8 in the MHB (Liu and Joyner, 2001b). 

In the mDA system, En1/2 are expressed in the mDA neurons during embryonic 

stages and the SN, and VTA at postnatal day 0 (P0). En1 is highly expressed by mostly 

all midbrain DA neurons in the SN and VTA, whereas En2 is expressed by a subset of 

them (Simon et al., 2001). In the development of mDA neurons, En1/2 substantially 

compensate for the loss of one another such that single mutants of either En1 or En2 

display a relatively normal appearance of SN and VTA. The double mutant analysis 

shows complete loss of SN and VTA DA neurons suggesting their strong requirement for 

midbrain DA neuron development. Moreover, the expression of α-synuclein, which has 

been genetically linked to PD in humans, is diminished at early stages of development in 

En 1 mutants and lost in En1/2 double mutants before the loss of the Th+ neurons (Simon 

et al., 2001). 

1.4.4.2.3 Msx1 

Msx1 (Muscle segment homeobox gene) is first expressed in mDA progenitors at 

E9.5, and remains restricted to a medial midbrain DA progenitors domain until E12.5 

(Andersson et al., 2006b). Although electroporation of Lmx1a into the chick ventral 

midbrain can induce Msx1 expression and DA fate, overexpression of Msx1 is 

insufficient to induce ectopic DA neurons in the midbrain (Andersson et al., 2006b). 

Similarly, transfection of Msx1 driven by the Nestin enhancer is insufficient to induce 

DA fate in mouse embryonic stem cells. Instead of mediating the induction of midbrain 

DA fate by Lmx1a, Msx1 functions to suppress alternative cell fate by repressing Nkx6.1, 

and to promote pan-neuronal differentiation. Therefore, it is suggested that Msx1 controls 
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the timing of DA cell neurogenesis. However, in Msx1 knockout embryos, there is only 

40% reduction in Ngn2+ progenitor cells and Nurr1+ DA neurons, suggesting that other 

factors, possibly Msx2, may compensate for the loss of Msx1 in DA neuron generation 

(Andersson et al., 2006b). 

1.4.4.2.4 Neurogenin 2 (Neurog2) 

The proneural gene Neurog2 is a BHLH transcription factor and is important for 

neuronal differentiation and neuronal subtype specification in various regions of the 

nervous system (Bertrand et al., 2002; Brunet and Ghysen, 1999; Guillemot, 1999). 

Neurog2 is expressed in midbrain DA progenitors but also in a few post mitotic Nurr1+ 

cells in the intermediate zone separating the progenitors from the Th+ mature neurons 

(Kele et al., 2006). 

Mutational studies in mouse show that Neurog2 is the major proneural gene involved 

in the development of midbrain DA neurons. The Neurog2 null mice have a substantial 

reduction of TH+ neurons at early stages of development, and only a few TH+ cells can 

be detected in the lateral edges of the DA domain. This phenotype gradually recovers 

later in development and is probably due to the compensation of other proneural genes 

such as Mash1 (Andersson et al., 2006b; Kele et al., 2006). Substituting Mash1 allele into 

the Ngn2 locus can only partially accelerate the development of midbrain DA neurons 

without providing a full recovery. This illustrates the unique requirement of Neurog2 for 

neurogenesis of the ventral midbrain DA neurons (Kele et al., 2006). 

1.4.4.2.5 Nurr1 

Nurr1 (Nr4a2) is a member of the nuclear hormone receptor family of ligand 

inducible transcription factors. It is known as an “orphan nuclear receptor” since its 
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ligand has not yet been identified. It is widely expressed in the CNS as well as in 

midbrain DA neurons at the time when they become postmitotic (Wallén et al., 1999). 

Mutant studies of the Nurr1 -/- mice show that these cells lose the expression of TH. 

They do maintain the expression of En1, AHD2, and Pitx3 during early development, but 

are lost at later stages. This illustrates that Nurr1 is not required for the initial 

specification step of midbrain DA neurons but is crucial for the maturation, migration and 

guidance of axons to their targets in the striatum. This is achieved by regulating the 

expression of mature mDA markers involved in these processes (Hermanson et al., 2003; 

Jacobs et al., 2009; Wallén et al., 1999). The identification of Nurr1 mutations in patients 

with familial PD has emphasized its clinical significance (Le et al., 2003). 

1.4.4.2.6 Pitx3 

The paired-like homeodomain transcription factor Pitx3 is expressed in the ventral 

midbrain from E11.5 onwards and its expression correlates with the appearance of 

midbrain DA neurons (Holland and Takahashi, 2005; Smidt et al., 1997). A knock-in 

GFP reporter of Pitx3 shows overlapping expression of GFP and TH in the vast majority 

of the mDA neurons in the SN and VTA (Zhao et al., 2004). On the contrary, a double 

immunohistochemistry study demonstrates the heterogeneity of Pitx3 expression in the 

midbrain DA populations (van den Munckhof et al., 2003). A study of naturally occurring 

Pitx3 mutant mice known as the aphakia mice suggests that Pitx3 functions in protecting 

DA neurons from cell death. Since the subpopulation expressing Pitx3 was more 

susceptible to cell death in these mutants (van den Munckhof et al., 2003). These results 

demonstrate the requirement of Pitx3 for the development and survival of at least a 

subpopulation of midbrain DA neurons. 
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1.4.4.2.7 The Forkhead box transcription factors Foxa1 and Foxa2 

In the CNS, Foxa1 and Foxa2 (previously know as HNF-3α and HNF-3β 

respectively) are expressed in the ventral midline of the neural tube, and it is spread more 

dorsally in the midbrain than in the posterior neural tube (Lai et al., 1990; Lai et al., 

1991; Sasaki and Hogan, 1993). The requirement of Foxa factors for the development of 

the ventral midbrain and more specifically DA neuron development will be discussed in 

following chapters. 

 

1.4.5 How to make a midbrain DA neuron in vitro 

 

Embryonic stem (ES) cells are clonal cell lines derived from the inner cell mass of 

the developing blastocyst that can proliferate extensively in vitro and are capable of 

adopting all the cell fates in a developing embryo (Evans et al., 1981). So far there have 

been two protocols developed specifically to differentiate ES cells towards a DA fate, one 

involves cell aggregation and the application of Shh and Fgf8 (Lee et al., 2000) and the 

other is via co-culture of ES cells with PA6 stromal cells (Kawasaki et al., 2000). The 

nature of stromal cell-derived inducing activity (SDIA) is unclear as PA6 neural inducing 

activity remains when the cells are fixed  (and unable to secrete soluble factors), or when 

the PA6 cells are separated from the ES cells. It is suggested that SDIA may be a secreted 

factor that is restrained to the cell surface, as treatment with heparin removes the neural 

inducing activity (Kawasaki et al., 2000). 
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 A serum-free adherent monolayer culture method has been developed in which ES 

cells can develop into neural precursors, and subsequently DA neurons can be produced 

upon addition of Fgf8 and Shh  (Ying et al., 2003).  Recently this method was used to 

differentiate ES cells that were first transfected with an expression vector containing the 

Lmx1a cDNA driven by the Nestin enhancer. The Nestin enhancer is only active when 

the ES cells acquire a neuronal progenitor fate. Since Lmx1a is a key player in the 

specification of the midbrain DA neuronal fate a large percentage of the transfected ES 

cells differentiated to midbrain DA neurons when compared to cells transfected with a 

control GFP construct driven by the Nestin enhancer (Figure 1-5) (Andersson et al., 

2006b). Midbrain DA neurons can now be efficiently produced in vitro to be used for 

further studies, especially for experiments that are difficult to execute using in vivo tissue. 
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Figure 1-5: TH expressing neurons derived from ES cells.  

NesE-Lmx1a genetically modified ES cells differentiated in serum 

free media upon the addition of Shh and Fgf8. The TH+ neurons 

from this assay also express Nurr1, DAT, Pitx3, and Lmx1a. 

(Modified From Anderson, 2006) 
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1.5 The Forkhead transcription factors 

 

1.5.1 History of the Forkhead genes 

 

In the 1990s, chromosomal walking was used to clone the Forkhead gene in 

Drosophila. The product of this gene did not posses a known, at the time, protein motif. 

Nor was its sequence similar at the time to any other known protein. Mutational analysis 

in Drosophila illustrated the importance of Forkhead for the development of terminal 

structures of the embryo that give rise to the anterior and posterior gut. The homeotic 

transformation of the gut structures into head structures created a two pronged mutant 

embryo, hence the name Forkhead (Weigel et al., 1989). 

Mammals also express Forkhead proteins and they were originally identified as 

proteins enriched in the rat liver and were given the name Hepatocyte nuclear factor 3 

(HNF-3). The first gene identified was HNF-3α (Lai et al., 1990). Following HNF-3α 

two other members of this transcription factor family were identified, HNF-3β, and HNF-

3γ (Liu et al., 1991). The DNA binding domain of the HNF-3 proteins is composed of 

∼110 amino acids and presents a high degree of conservation between the three members 

of this family (Figure 1-6) (Weigel and Jäckle, 1990). 

The solution of HNF-3γ three dimensional structure revealed a core of 3 α-helices 

and β-Sheets flanked by two large loops or “wings” and factors possessing this DNA 

binding domain were referred to as winged-helix transcription factors (Clark et al., 1993). 

 Now over 100 new members of this family have been identified and all the 

members of this family are referred to as Forkhead box transcription factors (Fox). 15 
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subclasses have been created depending on the similarities between each protein. The 

HNF-3 proteins have been allocated to subclass A with HNF-3α now called Foxa1, HNF-

3β is Foxa2, and HNF-3γ is Foxa3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-6: Schematic representation of functional domains present in Foxa1–3.  

Amino acid numbering is for the mouse proteins. All three family members share 95% 

identity within the forkhead domain, while outside this domain Foxa1 and Foxa2 are 39% 

identical and 51% similar. Outside of the forkhead domain, Foxa3 is only weakly similar 

to Foxa1 and Foxa2, with the greatest homology in the N-terminal and C-terminal 

transactivation domains. The C-terminal region has also been shown to interact with the 

core histones H3 and H4 (Cirillo et al., 2002). TA, transactivation domain; HI, histone 

interaction domain; NL, nuclear localization. (Modified from Friedmana and Kaestner, 

2006) 
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1.5.2 Control of Foxa2 expression within the floor plate 

 

Foxa2 is expressed in the notochord and in the ventral midline of the neural tube at 

embryonic days 8.5.(Ang and Rossant, 1994; Sasaki and Hogan, 1994a). The initial 

expression of Foxa2 within the ventral midline of the neural tube occurs within the 

presumptive mesencephalon. Foxa2 expression spreads more laterally in the midbrain 

when compared to the posterior neural tube (Ang and Rossant, 1994; Sasaki and Hogan, 

1994b). Foxa2 has been shown to be able to induce Floor plate, one of the main signaling 

centres involved in midbrain DA neuron development. The analysis was done by 

expresing Foxa2 under the control of the En1 prormoter. Floor plate markers such as 

Foxa1, and BMP1 were detected in the dorsal domain where Foxa2 is expressed 

suggesting that a Floor plate structure was generated ectopicaly (Sasaki and Hogan, 

1994b). Shh, an important morphogen for the correct specification of midbrain DA 

neurons, has been suggested to be induced by Foxa2 within the notochord and Floor 

plate(Echelard et al., 1993; Hynes et al., 1995). It was later determined that due to Shh 

signaling Foxa2 is induced by Gli1, a downstream target of Shh. This way Foxa2 and Shh 

expression is induced and maintained within the floor plate (Figure 1-7)(Hynes et al., 

1997; Sasaki et al., 1997). 
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Figure 1-7: Schematic of the notochord and floor plate showing the 

transcriptional cascade resulting in Shh expression. 

 In the notochord, Foxa2 activates Shh, which then signals to the 

overlying neural plate. In response to Shh signaling, Gli2 activates 

Foxa2 expression in the neural plate. Foxa2, in turn binds the Shh 

regulatory elements to stimulate Shh transcription in the floor plate. 

(Adapted from Jeong, et al 2003) 
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1.5.3 Role for Foxa2 in midbrain DA neuron development  

 

Recently it was shown that Foxa1 and Foxa2 are expressed in mDA progenitors and 

mature neurons  and their expression is maintained up to adulthood (Figure 1-8). This 

suggests that Foxa1 and Foxa2 may be required for the development and maintenace of 

mDA neurons (Ferri et al., 2007; Kittappa et al., 2007). Cre recombinase driven by the 

Nestin promoter of Foxa2 in the  mutant background of Foxa1 null mice deletes all Foxa 

proteins from the ventral midbrain region from E10.5 onwards. It is observed that mDA 

progenitors develop normaly and the region is properly specified since progenitor 

markers Lmx1a and Lmx1b can be detected in the progenitor domain at E10.5. In these 

mutants mDA neurons fail to mature properly since mature markers such as Th, Nurr1, 

and AADC are not detected. It is suggested that this is due to a block in neurogenesis 

since Neurog2 is misregulated in these mutants (Ferri et al., 2007). In a recent study 

where Cre recombinase was driven by the En1 promoter it was shown that Foxa factors 

are required for the expression of Lmx1a, the key specifier of midbrain DA neurons. This 

study also illustrated the requirement of Foxa factors for the correct specification of the 

mDA region by inhibiting the expression of the homeodomain transcription factor 

Nkx2.2(Lin et al., 2009). Chromatin Immunoprecipitation analysis suggests that Foxa2 

regulation of TH and Nkx2.2 gene expression is direct (Lin et al., 2009). More recently 

Foxa2 has been shown to synergise with other factors through a feed forward loop for the 

induction of the mDA phenotype (Ang, 2006 2010, Lee, 2010). It has been suggested that 

Lmx1a can only perform its downstream functions within a Foxa2 positive domain 

suggesting their cooporations for the proper differentiation of mDA neurons (Nakatani et 

al., 2010). Furthermore, Chromatin immunoprecipitation analysis of the TH promoter 
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demonstrates the requirement of Nurr1 for the efficient recruitment of Foxa2 to its 

binding site (Lee et al., 2010). 

 

 

 

 

 

Figure 1-8:Foxa2 expression during mouse ventral midbrain development.  

Coronal sections through E11.5 and adult mouse midbrain show (A-B) 

Expression of Foxa1 and Foxa2 (Red) is restricted to the ventral midbrain 

region were DA neurons are born at E11.5. (C-D) Foxa1 and Foxa2 

expression persists through adulthood as shown by ISH (E) Immunostaining 

of Foxa2 (Green) and TH (Red) indicates a high degree of overlap. (Figure 

‘E’ is a Kind contribution by Dr. Simon Stott). 
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Moreover, reduced levels of Foxa2 protein in the adult mouse mDA neurons leads to 

progressive loss of these neurons that is accompanied with motor behavioural defficit 

(Kittappa et al., 2007). These mutant mice provide a new model of Parkinson’s disease 

that exhibits both the late onset and patholgical characteristics. These studies show the 

importance of Foxa1 and Foxa2 for the generation and maitenance of mDA neurons. 

Further studies are required to clarify the mechanisms by which Foxa1 and Foxa2 

function to control the proper differentiation of mDA neurons. 

1.5.4 Foxa role in regulation of gene expression 

 

1.5.4.1 Nucleosome positioning and Chromatin opening 

The nucleosome (the basic unit of chromatin) consists of DNA wrapped nearly twice 

around an octamer of four core histone proteins. This structure is dynamic and open to 

transcriptional regulation (Felsenfeld, 1992). It is generally accepted that transcription is 

regulated by transcription factors, which modulate the recruitment of the basal 

transcriptional machinery to a nearby promoter (Ptashne and Gann, 1997). Nucleosomes 

positioned on promoters ensure that transcription will not occur spontaneously at the 

wrong time. This in turn requires transcriptional regulators to overcome this chromatin 

barrier and access their sites in order to affect transcription (Lomvardas and Thanos, 

2002). In the mouse liver, the N1, N2, and N3 nucleosomes are positioned over the serum 

albumin enhancer when active. The transcriptional machinery is bound on the 

nucleosomal DNA and not the linker DNA. Foxa binding sites have been identified in the 

N1 nucleosomal particle and have been shown to be required for the activity of this 

enhancer (Liu et al., 1991; Zaret, 1995). In 1993 Foxa transcription factors have been 
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described to have a structure similar to linker histones, which have the capability to bind 

and compact chromatin. It was suggested that Foxa factors may possess similar 

nucleosomal binding capabilities (Clark et al., 1993). It was later revealed that Foxa 

proteins have the capability to position nucleosomes and this way organize the chromatin 

to a moor loose structure and allow further access to other transcription factors (Cirillo et 

al., 2002; Shim et al., 1998). 

 

1.5.4.2 Foxa function revealed by genome wide analysis of its recruitment to 
chromatin 

1.5.4.2.1 Chromatin immuno-precipitation 

Transcriptional regulation is a complex process that can be understood with the 

help of genome-wide mapping of protein-DNA interactions. A detailed map of binding 

sites for transcription factors and the core transcriptional machinery, which regulate 

various biological processes, can now be obtained and used to understand the regulatory 

networks involved in these processes (Park, 2009). Chromatin immuno-precipitation 

(ChIP) is the main tool used to investigate these mechanisms (Figure 1-9) (Solomon et 

al., 1988). In ChIP antibodies are used to select and enrich for a specific proteins that are 

bound to genomic DNA fragments. These DNA fragments can then be purified and used 

for down stream analysis. Quantitative PCR is the method used to obtain an accurate 

estimation of enrichment for predicted bound genomic regions, whereas the introduction 

of microarrays allowed the fragments from ChIP to be hybridized to a microarray chip 

(ChIP-chip). Therefore allowing the genome wide identification of DNA-protein 

interactions (Blat and Kleckner, 1999; Ren et al., 2000). 
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Recent advances in next generation sequencing (NGS) are now enabling the 

sequencing of hundreds of millions of short DNA fragments in a single run (Shendure 

and Ji, 2008). Chromatin immuno-precipitation followed by sequencing was one of the 

first applications of NGS (Barski et al., 2007; Robertson et al., 2007). Here the DNA 

fragments are sequenced directly instead of hybridizing them on an array. The higher 

resolution and greater coverage are just a few examples where ChIP-seq excels over 

ChIP-chip, thus providing substantially improved data. Te main disadvantage of ChIP-

seq is the cost and availability but these situations are being improved as well and we can 

expect ChIP-seq to become the method of choice in the near future for all ChIP 

experiments (Park, 2009). 
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Figure 1-9: An overview of the chromatin immuno-precipitation (ChIP) procedure. 

 Cells are initially cross-linked by 1% Formaldehyde agent that links DNA-interacting proteins to the 

DNA. The genomic DNA is then isolated and sheared by sonication, into a suitable fragment size 

distribution (100–300 bp used for ChIP- Seq). An antibody that specifically recognizes the protein of 

interest is then added and immuno-precipitation used to isolate appropriate protein–DNA complexes. 

The cross-links are then reversed and the DNA fragments purified (Modified from Hoffman and Jones, 

2009) 
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1.5.4.2.2 Chromosome wide analysis of Foxa1 targets in breast and prostate cancer 
models 

Foxa1 is commonly found highly expressed in tumors arising from prostate and 

estrogen receptor positive breast tumors (Lacroix and Leclercq, 2004). In a recent study 

curried out to identify Estrogen-regulated gene targets on a chromosome wide level 

identified Foxa proteins as cofactors required for the Estrogen mediated activity. Two 

families of nuclear receptors mediate the Estrogen regulation of gene expression, ERα, 

and ERβ. Chromatin immuno-precipitation of ER coupled with tiled arrays of 

Chromosomes 21-22 of breast cancer cells identified ER gene targets. Chromatin 

immuno-precipitation coupled with qPCR analysis of Foxa1 binding to the ER recruited 

regions identified ∼50% co-recruitment. Foxa1 was also shown to be required for the 

recruitment of ER to its targets (Carroll et al., 2005).  

Androgens are male hormones that play important roles in prostate development 

and development of other male sex organs and their function is mediated through nuclear 

receptors known as androgen receptors (AR). Foxa1 was shown to interact with AR in 

prostate cancer cells (Gao et al., 2003). In a later study where gene targets were identified 

for ER in breast cancer cells and for AR in prostate cancer cells, the authors show that 

Foxa1 differential activity in these breast and prostate cells relies on its differential 

recruitment to its target sites and its alternative collaboration with the lineage specific 

factors ER and AR at tissue specific enhancers. Foxa1 recruitment was also shown to 

correlate with histone modifications identified in transcriptionally active regions in these 

cancer cells and is required for their activity in transcription initiation. Conversely, Foxa1 

is not required for their maintenance as shown by siRNA silencing experiments (Lupien 
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et al., 2008). This data suggests an important role for Foxa proteins in chromatin 

remodeling and transcription initiation. 

1.5.4.2.3 Foxa2 function revealed by ChIP-Seq analysis 

Foxa2 has been shown to be an initiating factor in the earliest stages of liver 

development in the mouse embryo. Foxa2 was also shown to be involved in the later 

functions of the adult liver, such as bile acid and glucose homeostasis (Ang and Rossant; 

Rausa et al., 2000; Wolfrum et al., 2003). Foxa2 directly regulates genes involved in 

glucose and lipid metabolism such as glucose-6-phosphatase and tyrosine amino 

transferase (Friedman and Kaestner, 2006; Wolfrum et al., 2003). In 2008, the first study 

for the global identification of Foxa2 binding targets was performed (Wederell et al., 

2008). The authors used adult mouse liver cells for the ChIP-seq experiment. This study 

presented many new properties of Foxa2 genomic recruitment such the distribution of the 

binding events throughout the genome and the correlation of genes associated with the 

peaks and their expression in the adult liver. Interestingly, 48% of the genes expressed in 

the liver are also associated with a Foxa2 bound region. Moreover, they show that Foxa2 

binding events mostly occur within 10 Kb upstream of the transcription start site (TSS) or 

within the first intronic region, suggesting close relation of Foxa2 binding close to 

promoters. Also, a few insights have been described through de novo motif search 

performed on the data set for possible co-factors (Wederell et al., 2008).  

A more recent ChIP-seq study took a further step in analyzing the transcription 

factor characteristics of Foxa2 by assessing its interrelationship with the other members 

of this transcription factor family (Foxa1, and Foxa3). Instead of using in vivo obtained 

tissue as in the previous study they performed ChIP-seq on the Hepatocyte carcinoma cell 
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line HepG2. They found that Foxa1 and Foxa3 have dissimilar distribution of their 

binding events. Furthermore, Over 50% Foxa1 peaks overlapped with the Foxa2 peaks. 

This suggests redundancy in the functions of these two factors, and also their possible 

physical interaction. Co-immunoprecipitation (IP and ChIP-reChIP) experiments show 

that Foxa1 and Foxa2 interact and bind to similar genomic locations (Motallebipour et 

al., 2009).  

These studies are good examples of the power ChIP-seq offers for this type of 

genome wide analysis of transcription regulation and identification of novel mechanistic 

interactions.
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1.6  Aim of project 

Foxa2 has been shown to play crucial roles in the specification, development, and 

maintenance of midbrain DA neurons (Kele et al., 2006; Kittappa et al., 2007; Lin et al., 

2009). Many genes involved in this processes have been shown to be regulated by Foxa2 

(Lin et al., 2009 2006). Recent global studies of Foxa2 recruitment to the genome in adult 

mouse liver cells and liver carcinoma cell lines have given many new mechanistic 

insights to the way Foxa2 functions as a transcriptional regulator (Motallebipour et al., 

2009; Wederell et al., 2008). 

The primary aim of this project is to identify the global binding events of Foxa2 in 

the mDA neurons through ChIP-seq experiments performed at two important stages of 

their development (specification, and differentiation). The results will be used to identify 

new targets and biological processes that they are involved in. 

A secondary aim of the project is to perform enhancer analysis using newly 

identified regions from the ChIP-seq data and identify possible mechanisms driving their 

function in regulating gene expression. 
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2. Materials and Methods 
 

2.1 In Situ Hybridization 

 

Adult brains were dissected and fixed in 4% paraformaldehyde in 1M PBS 

overnight, washed in PBS and cryo-protected in 30% sucrose in PBS and sectioned on a 

Leica Jung cryostat at a thickness of 14 um. The in-situ hybridization procedure has been 

described previously (Conlon and Herrmann, 1993). Foxa1/2 probes used from Ang et al 

(1993). 

 

2.2 Immunohistochemistry 

 

Cells were fixed with, freshly made, 4% PFA for 10 min. at room temperature. 

Cells were then washed with 1X PBS. Cells were incubated for 10 min with blocking 

solution (5%FBS, 0.1% Triton, PBS). Primary Antibody was added and cells were 

incubated at 4oC over night. Cells were then washed 3X with 0.1%Triton PBS. Secondary 

Antibody was added and cells were incubated at room temperature for 1 hour. Antibodies 

used: Rabbit anti Nurr1 (Santacruz), mouse anti TH (Chemicon), rabbit anti Lmx1a (J. 

Ericsson), mouse anti Tuj1 (Chemicon), mouse anti Nestin  (Chemicon), rabbit anti 

Foxa2 (J.A. Whitsett).  
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2.3 Differentiation of ES Cells 

 

E14.1 (NesE-Lmx1a, NesE-GFP) ES cells were propagated on gelatinized culture 

dishes in DMEM (Invitrogen) supplemented with 2000 U/ml LIF (Chemicon), 10% KSR, 

2% FCS, 0.1 mM nonessential amino acids, 1 mM pyruvate (Invitrogen), and 0.1 mM b2-

mercaptoethanol (Sigma). For in vitro differentiation 15,000 cells/well were plated on 

gelatinized 24-well plates, and incubated in ES medium for 12–15 hr. Thereafter, the 

cells were washed once with PBS and grown in N2B27 differentiation medium (Ying et 

al, 2003) supplemented with 20 ng/ml bFGF (Invitrogen), 100 ng/ml FGF8, and 100 nM 

SHH for 0–8 days.  

2.4 Chromatin immunoprecipitation of in vitro and in vivo samples  

 

The samples used were prepared from cells acquired from in vitro or in vivo DA 

systems. The in vitro sample was generated from Nestin-Enhancer-Lmx1a-stably 

transfected ES cells that have been differentiated into mDA progenitors as described in 

Andersson et al 2006. The in vivo samples were prepared from dissected ventral 

midbrains of E10.5, E12.5 and E14.5 mouse embryos. Cells or tissue were cross-linked in 

1% formaldehyde for 10 min while rotating at 40 C. Cross-linking was quenched by 

adding glycine to a final concentration of 0.125 M for 5 min while rotating. The tissue 

was rinsed in cold PBS and homogenized with a plunger in cold Whole cell lysis buffer 

(10 mM Tris–Cl, pH 8.0, 10 mM NaCl, 3 mM MgCl2, 1% NP-40, 1% SDS) and protease 

inhibitors. Cells were incubated at 4°C for 10 min. Lysate was sonicated using the 

Diagenode Bioruptor for 15 min on high, using 30 s intervals. Debris were removed by 

centrifugation at 13 000 g for 10 min, and the supernatant was collected and snap frozen 
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in liquid nitrogen. A 10 uL aliquot was reverse crosslinked by the addition of NaCl to a 

final concentration of 192 mM, overnight incubation at 65°C, and purification using a 

PCR purification kit (Qiagen, CA, USA). The chromatin concentration was determined 

using a NanoDrop 3.1.0 nucleic acid assay (Agilent Technologies, Santa Clara, CA, 

USA). Ten micrograms of chromatin per sample was precleared by adding 90 uL of 

protein A-agarose in 1 ml of ChIP dilution buffer (0.01% SDS, 1.1% Triton X-100, 167 

mM NaCl, 16.7 mM Tris–Cl, pH 8.1) and rotating the sample for 1 h at 4°C. Protein A-

agarose was sedimented by centrifugation at 3000 g for 30 s. Two micrograms of rabbit 

anti-Foxa2  (kind gift of J.A. Whitsett), anti-Otx2 serum or normal rabbit anti-IgG 

antibody (Millipore #12-370), was added to the supernatant and incubated overnight at 

4°C. Protein A-agarose was blocked overnight at 4°C with 1 mg/ml bovine serum 

albumin in ChIP dilution buffer, added to the chromatin, and rotated for 1 h at 4°C. 

Following three consecutive washes of 5 min each with TSE I (0.1% SDS, 1% Triton X-

100, 2 mM EDTA, 20 mM Tris–Cl, pH 8.1, 150 mM NaCl), TSE II (0.1% SDS, 1% 

Triton X-100, 2 mM EDTA, 20 mM Tris–Cl, pH 8.1, 500 mM NaCl) and ChIP buffer III 

(0.25 M LiCl, 1% NP-40, 1% deoxycholate, 1 mM EDTA, 10 mM Tris–Cl, pH 8.1), 

chromatin was eluted by adding 100 uL of freshly made ChIP elution buffer (1% SDS, 

0.1 M NHCO3) to the pellet and rotating the sample for 10 min. Elution was repeated 

with an additional 100 uL of ChIP elution buffer, and the eluates were combined. Cross-

linking was reversed by the addition of NaCl to a final concentration of 192 mM and 

overnight incubation at 65°C. The samples were resuspended in Tris-EDTA  
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2.5 Real-time qPCR 

 

 ChIP-qPCRs were assembled using Platinum SYBR Green Super mix 

(Invitrogen). Reactions were performed in triplicates using the ABI 7900 PCR System 

(ABI). The enrichment was calculated by comparing input (sheared genomic DNA) to 

ChIP material (2Ct input-Ct ChIP). The enrichment of Foxa2 target regions was compared 

to regions close to the Gli2 and Shh loci (-ve 1, and –ve 2 respectively), which served as 

a reference for nonspecific DNA. One-way Annova and Dannet test was used to calculate 

the significance of enrichment of the target region over the negative control region (-ve 

1). 

  Primers were designed using the Primer3 sofware (www.biotools.umassmed.edu). 

All primers were tested using multiple dilutions of input genomic DNA and dissociation 

curve was set to make sure a single product was generated. Primers are provided in the 

Appendix chapters. 

 

2.6 ChIP followed by high throughput sequencing 

 

For ChIP-Seq experiments, for the purpose of collecting enough of the 

immunoprecipitated DNA, 20 independent ChIP assays were performed as described 

previously and were finally collected in a single PCR purification column (Qiagen). For 

the in vitro system 107 cells were required. As for, the in vivo samples required 80 E12.5 

and 40 E14.5 ventral midbrains respectively. As control sample we used input DNA. 

10ng of the ChIP (experiment) or input (control) DNA samples were modified for 
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sequencing following the manufacturer’s protocol (Illumina). Cluster generation and 

sequence alignment to the mouse genome (mm9) with subsequent pipeline processing 

were performed following Illumina’s protocol. Note, two lanes were sequenced for each 

sample and merged the tags for deeper sequencing purposes. 

 

2.7 Peak calling using a model based analysis of ChIP-seq (MACS) 

MACS analyses the ChIP-seq tags of the experiment against the control sample 

(Input). MACS linearly scales the total control tag count to be the same as the total ChIP 

tag count. Since there may be tags that are sequenced repeatedly, more times than 

expected from a random genome-wide tag distribution. Such tags might arise from biases 

during amplification of the ChIP sample and preparation of the sequencing library, and 

are likely to add noise to the final peak calls. Therefore, MACS removes duplicate tags 

higher in number than what is expected. 

The program then Slides 2 dimensional windows across the genome to find 

candidate peaks with a significant tag enrichment (p value 10e-5). It will then merge 

overlap peaks, and extend each tag a fixed number of bases from its center. For each 

candidate peak, the window is centered at the peak location in the control sample and a p-

value is calculated and the false peaks are removed. Peaks with p-value below 10e-5 are 

called (positive peaks). 

The false discovery rate (FDR) is calculated by reversing the control and treatment 

data, calling peaks using the same strategy, and then calculating p-values for these 

'negative peaks'. After ranking 'positive' peaks and 'negative' peaks by p-values, one can 
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calculate an FDR for a certain p-value and is the #control peaks/#ChIP peaks for that p-

value. 

2.8 Motif analysis 

To determine the de novo sequence recognized by Foxa2 in our ChIP-Seq data set 

we performed the ultra conserved motif search using MEME (www.meme.sdsc.edu). First 

we sorted our list according to the FDR, low FDR peaks being at the top of the list and 

the higher FDR peaks being at the bottom of the list. The peaks were then grouped in 

groups of 500 peaks, generating 19 groups. The subpeak regions of 60 bp spanning the 

peak summits from each group were uploaded on MEME and the default parameters 

were used to do the search. 

To search the ChIP-Seq data set for possible enrichment of the Otx2 motif, the 

position weight matrix provided by Uniprobe (www.thebrain.bwh.harvard.edu/uniprobe) 

was used to search the data set using the Perl module TFBS by Boris Lenhard (Lenhard 

and Wasserman, 2002). The score threshold was set at 80% similarity. Based on these 

parameters 629 peak sequences were found to contain the Otx2 PWM. To establish 

statistical confidence for the motif search results 1000 random datasets, were generated, 

each with the same number of sequences as the ChIP-Seq dataset, and with the same 

dinucleotide composition. The same parameters were used to search for the Otx2 PWM 

in these random data sets. 

2.9 Gene Ontology (GO) analysis 

 
The identfication (ID) numbers of the genes used for this analysis were extracted 

from MGI (www.informatics.jax.org). These IDs were used as reference on 
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GOTOOLBOX (www.genome.crg.es/GOToolBox) to identify the overrepresented GO 

terms. GO categories were taken from the ‘‘biological process’’ level. Only terms with p-

value <0.001 were considered for the analysis and the Fold enrichment of the genes 

found in our list over the reference (whole genome) were calculated for each GO term. 

Genes in the top terms identified for each category studied can be found in the Appendix 

chapter. 

 

2.10 Breeding and genotyping of mutant animals.  

 

All mouse strains were maintained in a mixed MF1-129/SV background. En1KICre/+, 

Foxa2flox/ flox
 and Foxa1 loxp/loxp

 mouse strains were generated as described (Sapir et al., 

2004; Hallonet et al., 2002; Gao et al., 20008 respectively). In this thesis, the Foxa1loxp
 

allele will be referred as Foxa1flox.  Foxa2 flox/ flox;Foxa1 flox/ flox
 mice were generated by 

crossing  Foxa2flox/flox
  with Foxa1flox/flox

 animals. To obtain conditional Foxa1/2 double 

mutants, En1KICre/+
 mice were crossed with Foxa2flox/flox;Foxa1 flox/ flox

 animals. 

Subsequently, En1KICre/
+;Foxa1fl1ox/+;Foxa2flox/+

 F1 male animals were then mated to 

Foxa2 flox/ flox;Foxa1 flox/ flox
 females to generate En1KIcre/ + ;Foxa2 flox/ flox;Foxa1 flox/ flox

 

double mutants. The Foxa2flox and Foxa1flox
 alleles were detected by PCR (Hallonet et al., 

2002; Gao et al., 2008), whereas the Cre transgene was detected by using a pair of 

primers and PCR conditions as described by Indra et al. (1999). 

The En1Cre/+; Otx2flox/flox and Nestin Cre/+, Foxa2 flox/ flox;Foxa1 flox/ flox
  mice have been 

described previously (Kele et al., 2006; Puelles et al., 2004).  
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2.11 RNA extraction 

 

Single E10.5 dissected ventral midbrain tissue or 500 X 103 Cells harvested at day 

2, day 3.5 and day 5 of in vitro diffrentiation were collected in the RNA extraction buffer 

provided by the Pico pure RNA extraction kit (ARCTURUS). RNA was extracted 

according to manufacturers specifications.  

 

2.12 Reverse transcriptase qPCR analysis  

 

The cDNA was prepared from in vitro differentiated NesE-Lmx1a Es cells or E10.5 

single dissected mouse ventral midbrain of the mutant strains described previously. The 

Pico Pure kit (Arcturus) was used to extract the RNA. Total RNA were transcribed into 

cDNA with the SuperScriptTM III RT (Invitrogen, Carlsbad, CA) and oligo (dT) primers. 

For quantitative analysis of the expression level of mRNAs, real-time PCR analyses 

using Platinum SYBR Green Super mix (Invitrogen) were performed in triplicates using 

the ABI 7900 PCR System (ABI). Oligonucleotides amplifying small amplicons were 

designed using Primer3 (biotools) software. Amplifications were performed in 20 µl 

containing 0.5 µM of each primer. 0.5 X SYBR Green (Invitrogen), and 2 µl of 50 fold 

diluted cDNA.  Forty-five PCR cycles were performed with a temperature profile 

consisting of 95oC for 30 sec, 60oC for 30 sec, 72oC for 30 sec, and 79oC for 5 sec.  The 
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dissociation curve of each PCR product was determined to ensure that the observed 

fluorescent signals were only from specific PCR products. After each PCR cycle, the 

fluorescent signals were detected at 79oC. The fluorescent signals from specific PCR 

products of cDNA prepared from mutant or control (wild type littermate) ventral 

midbrain tissue were normalized against that of the GAPDH gene (2Ct GAPDH-Ct Gene 

tested), and then relative values were calculated by setting the normalized value of control 

as 1.  All reactions were repeated using at least three independent samples (biological 

replicates), and One-way Annova and Dannet test was used to calculate the significance 

of the fold change of the expression of genes tested in mutant compared to the wild type 

control. 

2.13 Illumina Array Hybridization 

Biotinylated cRNA were prepared from 500 ng of total RNA using an Illumina 

TotalPrep RNA Amplification Kit (Ambion, TX) and cRNA yields were quantified using 

an ND-1000 spectrophotometer (Nanodrop Technologies). cRNA (1500 ng) were 

hybridized to Illumina's MouseRef-8 v2.0 expression BeadChips (Illumina) containing 

25,000 mouse genes using the hybridization solution supplied by the manufacturer. All 

reagents and procedures for washing, detection, and scanning were performed according 

to the Beads Station  system protocols. 

2.14  Luciferase Assay (Promega) 

P19 cells were transfected with constructs containing candidate regulatory elements 

upstream of a luciferase gene to measure their enhancer activity. Foxa2 candidate 

cofactors (Otx2, Lmx1a, and Nurr1) including Foxa2 were cloned down stream the CMV 
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promoter. All transfection plasmid constructs were purified by the Qiagen Maxi-prep 

method. For each experiment, individual sample plasmids were tested in triplicate. 200 

nanograms of sample plasmid DNA were introduced into P19 cells by the Lipofectamine 

method (Invitrogen). All plasmids tested were cotransfected with 10 ng of Renilla to 

control for transfection efficiency.. The empty luciferase vector was used as a negative 

control. Cells were grown in the appropriate media for 2 days after subculturing onto 20 

well tissue culture plates to a density of 5 Χ 10 4 cells/well. Cells were assayed for 

luciferase activity using the Promega luciferase assay kit and the analytical luminescence 

monolight luminometer. Relative light units were determined after a 10-s detection 

period. The ratio of luciferase activity Luciferase construct/ Renilla was determined, and 

the average of triplicate readings was expressed as fold expression over background 

(activity of the empty luciferase vector) 

  

2.15 Generation of Reporter Constructs 

Genomic sequences bound by Foxa2 within the Lmx1a and Lmx1b loci were PCR 

amplified uding high fidelity Taq (Roche) Fragments were subcloned into the TOPO 

vector (Invitrogen) and directly sequenced using the T7 promoter. The reporter construct 

used for the transgenic studies was BGZA, which contains the β-globin minimal 

promoter, lacZ gene, and SV40 polyadenylation cassette (Helms et al., 2000; Yee and 

Rigby, 1993). The fragments were then cloned into the Sal1, Nhe1 site upstream of the β-

globin minimal promoter. The primers used are: 

Lmx1a CR1 

F: TTGTAAGCTTCTCTGCCCAGTTCCCCAGGA 
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R: AGAAGCTTGCTCTGTTTCCACCCTCTCCAC 

      Lmx1a CR2 

F: AGGCTGAAGCTTCACACCCGGACGGCAGTTTT 

R: CAAAGCTTGCCGGCCCGAAGGCGCGGCCCCG 

Lmx1b CR1 

F: AAGAAGCTTCAGGCAGCCAGGGGTTAA 

R: AAAAGCTTGTGTGTGTGTGTGTGTGTG 

 

2.16 Production and genotyping of transgenic mice 

Transgenes were prepared for microinjection as described (Epstein et al., 1996). 

The genotyping of transgenic embryos was carried out by PCR using proteinase K 

digested tail biopsies as DNA templates. Primers directed against lacZ (F: 

GCACATCCCCCTTTCGCCAGCTGGCGTAAT)(R:CGCGTCTGGCCTTCCTGTAGCCAGC

TTTCA), generating DNA fragments of (220 bp), were used under the following PCR 

conditions: 94°C for 1 minute, 60°C for 1 minute, 72°C for 1 minute, for 30 rounds 

followed by a final extension at 72°C for 10 minutes. For staging embryos, the day of 

vaginal plug detection corresponded to 0.5 days post coitus (dpc). 

 

2.17 Whole-mount β-galactosidase  

β-galactosidase activity was detected in whole-mount embryos by using X-gal 

(Sigma) as substrate according to Echelard et al. (1994). The embryos were stained from 

60 minutes to overnight depending on the strength of transgene expression.  
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3. Results 
 

In this study, we identified and analyzed genomic regions bound by Foxa2 in DA 

cells during specification and differentiation. ChIP-qPCR experiments were performed 

for the purpose of validating the sites identified through genome wide ChIP-Seq analysis. 

RT-qPCR expression analysis of the candidate target genes was investigated in loss of 

function models to establish the functionality of the protein/DNA interaction. To identify 

the possible biological processes Foxa2 may be involved in regulating we performed GO 

term analysis of Foxa2 candidate target genes. The names of genes mentioned in this 

thesis, as well as the associated chromosomal regions tested in the independent ChIP-

qPCR assays are summarized in the appendix chapters.  

 

3.1 Genome wide analysis of Foxa2 binding in an in vitro model for 
midbrain DA progenitors 

Foxa1 and Foxa2 start being expressed in the mouse ventral midbrain progenitors 

at E8.5 (Hahn et al., 1993). By E10.5 the midbrain progenitor cells express all the 

markers defining a mDA precursor, such as Lmx1a, Lmx1b, Foxa2, and Shh, but none of 

the immature and mature neuronal markers such as Nurr1, AADC, Th, DAT, and Pitx3 

are expressed at this point (Kele et al., 2006). From a developmental point of view, E10.5 

is the proper time point to harvest primary ventral midbrain cells to perform ChIP-Seq. 

An obstacle for this is that ChIP-seq requires 20 million cells for the analysis and it is 

extremely difficult and time consuming to dissect enough E10.5 ventral midbrain tissue 

for a ChIP-Seq experiment. For this reason we decided to use an in vitro cell line system 



 74 

of mDA progenitors character to identify Foxa2 target genes during the specification of 

these neurons.  

3.1.1 Defining the in vitro midbrain DA progenitor model 

During this thesis there were a number of in vitro models for mDA neurons to 

consider, such as in vitro differentiation of ES cells. The protocol by Kawasaki et. al. 

demanded differentiation of ES cells over a stromal cell line, whereas the protocol by Lee 

et al required cell aggregation and application of Fgf8 and Shh in the media to induce the 

proper cell fate (Kawasaki et al., 2000; Lee et al., 2000). Ying et al offered an alternative 

method by differentiating ES cells as an adherent monolayer culture to produce DA 

neurons upon the addition of Fgf8 and Shh to the serum free media (Ying et al., 2003). 

None of these methods using ES cells produce DA neurons efficiently with the proper 

markers that define ventral midbrain DA neurons (Andersson et al., 2006b; Kawasaki et 

al., 2000; Lee et al., 2000). These approaches result in a largely heterogeneous population 

that cannot be used for this experiment. Another cell line to consider is known as MN9D 

(Rick et al., 2006). MN9D is an immortalized cell line resulting from the fusion of mouse 

neuroblastoma and ventral midbrain DA neurons. These cells express TH, and also 

produce and transport DA (Rick et al., 2006). Due to the fact that MN9D cells express 

mature mDA markers rendering them unsuitable for use in this experiment since we aim 

at strictly using cells with a DA progenitor character. 

The identification of Lmx1a as an intrinsic determinant of mDA neuron 

differentiation made it possible to produce high yields of mDA progenitors in vitro 

(Andersson et al., 2006b). The method utilizes ES cells transgenic for Lmx1a driven by 

the promoter of the neural stem cell marker Nestin. The experiment requires 8 days of 
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differentiation. By day 5 the cells express most if not all the known midbrain DA 

progenitor markers including Foxa2 and Lmx1a as shown by immunofluorescence, and 

microarray expression analysis (Figures 3-1, 3-4).  

 

 

 

 

 

 

By day 8 a large percentage of the colonies (over 80%) express mature mDA 

neuronal markers and acquire neuronal morphology (Figure 3-2). As a control experiment 

we differentiated ES cells transgenic for GFP under the Nestin enhancer using the same 

culture conditions as the previous case. We observed that the efficiency of generating 

TH+ neurons is very low (below 10% of colonies express TH); suggesting that the 

transgenic NesE-Lmx1a ES cell line is the proper cell line to use for our experiments 

(Figure 3-3). 

Foxa2 
Nestin 
Dapi 

D E F 
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Nestin 
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Lmx1a  
 

Nestin 
 

Foxa2 
 

Figure 3-1: Foxa2 and Lmx1a expression after 5 days of in vitro monolayer differentiation of 

NesE-Lmx1a transgenic ES cells.  

(A-C) Lmx1a and Nestin staining followed by counter staining with Dapi. (D-F) Foxa2 and 

Nestin staining followed by counter staining with Dapi. 
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Figure 3-2: Expression profile of neurons generated at day 8 (D8) of in vitro differentiation of 

NesE-Lmx1a transgenic Es cells. 

 (A-C) TH overlap with Tuj1. (D-F) TH overlap with Nurr1. (G-I) TH overlap with Foxa2. TH+ 

neurons are generated with high efficiency by D8, and immuno-histochemical staining suggest co-

expression of Nurr1 and Foxa2. Dapi was used as counter staining in all cases. 
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3.1.1.1 Day 5 of in vitro differentiation of NesE-Lmx1a transgenic Es cells is the 
best time point to harvest mDA progenitors for ChIP-Seq 

Illumina expression arrays were used to profile the cells during their initial stages of 

differentiation at the defined time points, Day 2 (D2), Day 3.5 (D3.5), and Day 5 (D5). 

The expression dynamics of known genes normally expressed in the ventral midbrain 

were assessed at these time points (Figure 2-4). Interestingly, most of the progenitor 

marker genes detected such as TCF12 (E-box protein expressed in the ventricular zone), 

Corin (floor plate marker) and Bmp7 reach a peak of expression at D5 and more 

importantly none of the known mature markers (TH, and AADC) were expressed at this 

time point (Uittenbogaard and Chiaramello, 2002; Mavromatakis, 2006). Importantly, 

Shh, a target of Foxa2, was expressed by day 5, and ChIP-qPCR experiments with Foxa2 

antiserum on day 5 show that Foxa2 is bound to its target regions on the Shh and Foxa2 

regulatory elements (Figure 3-5). This result suggests that Foxa2 is exerting its regulatory 

Tuj1 

TH/Dapi 

A B C 

Tuj1 TH 

Figure 3-3: Expression profile of neurons generated from the in vitro differentiation of NesE-GFP 

transgenic Es cells.  

(A-C) Overlap of TH with Tuj1 and counter staining with Dapi . TH+ neurons are produced at very 

low efficiency from an Lmx1a negative context. 
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influence on its target genes at D5. All together, this data shows us that D5 is a suitable 

time point to harvest the differentiated cells for the ChIP-Seq experiment. 

 
 

 

 

 

 

 

 

Figure 3-4: Microarray analysis of the expression profile of NesE-Lmx1a ES cells 

during differentiation towards midbrain DA progenitors.  

Genes presented: Foxa2, Shh, Lmx1a, Slit2, Tcf12, Corin, Bmp7, and Nestin. We 

observe the expression of all these genes arriving at a peak on day 5 (D5) of in vitro 

differentiation. 
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Figure 3-5:ChIP experiments of chromatin from D5 in vitro differentiated mDA 

progenitors validating the positive control regions, Shh brain enhancer and the 

Foxa2 floor plate enhancer using Foxa2 antiserum.  

Non-specific antibody against IgG was used for the mock ChIP assays. Error 

bars represent SEM. Each ChIP was performed on chromatin samples from 

three biological replicates, and enrichment of both control regions over the 

mock experiments was statistically significant (P < 0.05) 
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3.1.2 Identification and characterization of Foxa2 DNA binding in vitro 

3.1.2.1 Identification of Foxa2 DNA binding events 

Chromatin immunoprecipitation and massively parallel Illumina 2G sequencing 

(ChIP–Seq) were carried out to identify binding sites of Foxa2 in mDA progenitors derived 

from our in vitro D5 differentiated NesE-Lmx1a ES cells (Andersson et al., 2006b). 

Sequencing of the ChIP product generated ~107 high quality sequences that mapped to the 

mouse genome and are viewed by the UCSC mm9 genome browser 

(www.genome.ucsc.edu). Peaks were called by a model-based analysis of ChIP-Seq  

(MACS), and overlapping mapped sequences represent Foxa2 bound regions (Zhang et al., 

2008). By normalizing the ChIP experiment to an input control, a false discovery rate 

(FDR) was assigned to each peak and false peaks were removed from the list. We identified 

9160 peaks with an FDR substantially lower than 5%, providing a good level of confidence. 

To further establish the quality of the list we examined the known regulatory regions bound 

by Foxa2, the Shh brain enhancer and the Foxa2 floor plate enhancer using the UCSC 

genome browser (Jeong and Epstein, 2003; Nishizaki et al., 2001). Statisctorily, clear peaks 

could be identified in these regions providing initial confidence in the data set (Figure3-6). 

Furthermore, Foxa2 regulated genes identified in the lab from mouse genetic data such as 

Lmx1a, lmx1b, and Foxa1 are only a few examples of genes that have been associated with 

a peak from our list (Figure 3-7) (Lin et al., 2009; Mavromatakis, 2006). Two Regions 

bound by Foxa2 on each of the Lmx1a and Lmx1b loci have been studied in this thesis and 

will be known from now on as Lmx1a or Lmx1b Conserved Regions 1 and Conserved 

Regions 2 (CR1 and CR2 respectively) due to the high conservation of their sequence 

between many species (Figure 3-7). 
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Figure 3-6: Occupancy of Shh and Foxa2 conserved regulatory elements by Foxa2.  

(A) Schematic diagrams of the Shh brain and Foxa2 floor plate enhancers indicating peak regions 

generated from data obtained by Foxa2 in vitro ChIP-Seq experiments. (B) ChIP experiments of 

chromatin from E12.5 ventral midbrain tissue validating the positive control regions, Shh brain 

enhancer and the Foxa2 floor plate enhancer using Foxa2 anti serum. Genomic regions  (-ve1, -ve2) 

unbound by Foxa2 were used as negative control. Error bars represent SEM. Each ChIP was 

performed on chromatin samples from three biological replicates, and enrichment of both control 

regions over the negative regions in the ChIP samples was statistically significant (P < 0.05).  
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Figure 3-7: Occupancy of Lmx1a and Lmx1b conserved genomic elements by Foxa2.  

(A-B) Schematic diagrams of genomic regions occupied by Foxa2 within the Lmx1a and Lmx1b loci 

from data obtained by Foxa2 in vitro ChIP-Seq experiments. Red arrows indicate peaks called by 

peak calling algorithm MACS. CR1: First conserved region. CR2: Second conserved region. 
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3.1.2.2 DNA binding motifs enriched in our data set 

To determine the de novo sequence recognized by Foxa2 in our ChIP-Seq data set 

we performed a motif search using MEME (www.meme.sdsc.edu) to look for the best two 

motifs. First we sorted our list according to the FDR, low FDR peaks being at the top of the 

list and the higher FDR peaks being at the bottom of the list. The peaks were then grouped 

in groups of 500 peaks, generating 19 groups. The subpeak regions of 60 bp spanning the 

peak summits from each group were uploaded on MEME and the default parameters were 

used to do the search. The first motif was a Foxa2 motif defined by the JASPAR database 

(Bryne et al., 2008), and was enriched throughout the data set confirming further the 

validity of the results (Figure 3-8A). Furthermore, a second motif was identified using this 

method that greatly resembled an E-box motif as defined by the TRANSFAC database 

(Matys et al., 2006) similar to the Mash1 binding motif (Figure 3-8B). Mash1 is a basic 

helix loop helix transcription factor and is involved in neuronal differentiation and 

development. Mash1 acts as a transcription activator by binding on E-box sequences within 

promoters and enhancers of its target genes (Castro et al., 2006). These data suggests Foxa2 

may be co-occupying genomic regions together with an E-box binding protein. 
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Figure 3-8: De novo motifs identified from the ChIP-seq analysis. 

(A) Sequence of first de novo motif enriched in the ChIP-Seq data as identified by MEME. (B) Represents 

the known Foxa2 DNA binding motif present in the JASPAR database. (C) Sequence of the E-box motif 

(Castro et al., 2006) commonly bound by Mash1 (top). Sequence of the second enriched de novo motif 

identified by MEME in the data set (bottom). 
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3.1.2.3 Characterizing the locations of the high confidence peaks 

The locations of the high-confidence peaks were mapped to the nearest TSS of 

Ensembl annotated genes, and microRNA transcripts. We found that 47% of peaks were 

located within a gene region (Figure 3-9). Interestingly, only 8% of the peaks were 

located within 2 kb upstream or downstream of the TSS of annotated genes, while 27.8% 

of the peaks were located within 10 kb of the TSS (Figure 3-10A). 30% of peaks 

overlapping genes were localized to a first intron (Figure 3-10B). We also observed that 

40% of all peaks were more than 100 kb from the TSS of any annotated gene (Figure 3-

10C). Of these peaks, 45% overlapped with conserved genomic regions, suggesting that 

either Foxa2 may act at remote distances from genes or that a number of Foxa2-regulated 

genes have yet to be annotated. Thus, Foxa2-binding sites observed are not preferentially 

located close to an annotated TSS but are situated at a range of locations across the 

mouse genome. 
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Figure 3-9: Percentage of binding sites at various distances from and within genes. 

Recruitment at distal regions from or within genes is a general characteristic of Foxa2 

binding. 47% of peaks identified are within genes. 
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3.1.2.4 Validation of Foxa2 in vitro binding events using E12.5 mouse ventral 
midbrain tissue by ChIP-qPCR 

Binding events that occur in vitro may not be a direct indication of binding events 

occurring in vivo. To test our in vitro model we chose a group of 11 peaks assigned to 

genes expressed at E12.5 in the mouse ventral midbrain. We then performed ChIP-qPCR 

experiments using E12.5 mouse midbrain tissue to test these 11 regions. It was very 

encouraging to see that all sites were enriched in the independent Foxa2 ChIP (Figure 3-

11). This suggests that many regions bound by Foxa2 in the in vitro data set can be 

verified by independent detection methods (ChIP-qPCR) in the relevant in vivo system.  

 

 

Figure 3-10: Characteristics of Foxa2 genome wide DNA binding events (in vitro). 

(A) Percentage of binding sites at various distances from TSS. Recruitment at distal regions 

from the TSS is a general characteristic of Foxa2 genomic recruitment. (B) Distribution of 

peaks within genes. Majority of peaks are distributed within intronic regions with 30% 

identified within the first intron. (C) Distribution of the peaks from the nearest downstream 

gene. Most of the peaks are found between 10 and 100 kb away from the nearest downstream 

gene. 
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3.1.2.5 Overlap of ChIP-Seq data with microarray expression data 

The candidate target genes from the ChIP-Seq experiment were correlated with 

differentially expressed (DE) genes identified from the microarray time course assay of in 

vitro differentiated mDA progenitors described previously. Only DE genes with a p value 

<0.01 were considered. We observed that 25% of the DE genes correlated with a peak. 

Out of these peaks 16% are within 2kb of the TSS, 34% are within 10kb, and 72% are 

within 50kb (Table 1). This observation enhances the previous suggestion that Foxa2 

may exert it regulatory influence on gene expression from genomic regions at remote 

distances in DA progenitor cells. 

 

 

 

 

 

 

 

 

 

Figure 3-11: Genomic regions validated for Foxa2 binding by an independent ChIP-qPCR assay. 

ChIP was performed on chromatin extracted from ventral midbrain of E12.5 mouse embryos. All 

15 regions tested are enriched compared to negative control regions. Error bars represent SEM. 

Each ChIP was performed on chromatin samples from three biological replicates, and enrichment 

Foxa2 bound regions over the negative regions in the ChIP samples was statistically significant 

(* P value < 0.05).  
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3.1.2.6 GO term analysis of Foxa2 DE target genes identified in vitro  

To globally categorize the types of genes that are differentially regulated by Foxa2, 

we determined the enriched Gene Ontology (GO) functional categories that are among 

genes either up regulated or down regulated between D3.5 and D5, since this is the time 

point Foxa2 is reaching its peak of expression (Figure 3-4). We found that the up 

regulated candidate target genes are enriched for neuronal differentiation processes, 

whereas the down regulated set of targets are enriched for genes involved in alternative 

cell fate processes such as cardiac muscle and immune system development (Figure 3-12, 

3-13).  

 

# Peaks 9160 

# DE genes in microarray time course 3326 

# DE genes with a peak  824 

# Peaks within 2kb of DE gene TSS 160 (16%) 

# Peaks within 10kb of DE gene TSS 341 (34%) 

# Peaks within 50kb of DE gene TSS 720 (72%) 

Table 1. Distribution of Foxa2 peaks from the TSS of candidate targets. 

Most of the binding events are observed far away from the TSS. 
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:Figure 3-12: Gene ontology (GO) categories showing the most enriched 

biological processes of up regulated candidate targets in the system between D3.5 

and D5 of in vitro differentiation. 

 All categories displayed are of p-value<0.001 and are sorted according to fold 

change of the number of genes in each biological process in the experiment list 

over the reference list (whole genome). 
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Figure 3-13: Gene ontology (GO) categories showing the most enriched biological 

processes of down regulated candidate targets between D3.5 and D5 of in vitro 

differentiation.  

All categories displayed are of p-value<0.001 and are sorted according to fold 

change of the number of genes in the experiment list over the reference list  (whole 

genome) for each biological process. 
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Although these functional categories are quite broad, they are consistent with the 

function of Foxa2 in promoting neuronal differentiation and possibly inhibiting the 

development of alternative cell fates. In order to validate the target genes in these 

categories we identified the transcription factors together and other genes involved in 

diverse functions such as, Bmp7 (Bmp signaling), Corin (floor plate marker), Axin2 (Wnt 

signaling target), Fgr2 (Fgf8 receptor), Slit2 (migration process). Initially we tested the 

sites bound by Foxa2 in vitro through ChIP-qPCR assays performed on chromatin from 

E12.5 ventral midbrain tissue. A large proportion of the sites (80%) validated by the 

independent ChIP-qPCR assays (Figure 3-15). The 20% of bound regions that did not 

validate may be bound at earlier developmental time points. We next assayed the 

functional relevance of Foxa2 binding to these target genes. For the loss of function 

model we used the En1Cre/+;Foxa1flox/flox;Foxa2flox/flox mutant mice, since using En1 Cre/+ 

will affect the mDA cells at the progenitor (E10.5) stage.(Lin et al., 2009). The ventral 

midbrain was dissected from these mutants and the mRNA expression of candidate genes 

was compared to their wild type littermates by qPCR. Over 50% of the genes tested were 

affected in these mutants (Figure 3-14, 3-19). These results gave us the confidence that a 

significant proportion of the genes described as direct targets of Foxa2 will also be under 

its direct regulation. Interestingly, genes regarded as intrinsic determinants of mDA 

neuron specification (Lmx1a, and Lmx1b) are Foxa2 direct targets supporting further a 

direct role of Foxa2 in mDA specification (Huangfu and Anderson, 2006). 
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Figure 3-14: Validation of Foxa2 targets in ventral midbrain progenitors of 

En1Cre/+;Foxa1flox/flox;Foxa2flox/flox mice at E10.5. 

 Expression analysis by qPCR of candidate target transcription factors (TF), 

and genes involved in other functions. Foxa1 and Foxa2 are used as controls. * 

Fold change between mutant and its wild type littermate (Control) is 

statistically significant with p-value<0.05. 



 96 

 



 97 

 

3.1.2.7 E-box motif is enriched in regions associated with up regulated genes 
involved in neuron development 

The E-box motif identified as highly enriched in our ChIP-Seq data has been 

found in 1065 regions bound by Foxa2. Of these regions, 65 overlapped with up-

regulated genes from the in vitro time course microarray expression assay. GO term 

analysis suggests the involvement of the up regulated genes in biological processes such 

as axon guidance, neuron maturation and neurogenesis supporting the assumption of an 

E-box binding protein possibly cooperating with Foxa2 in the induction of these genes 

(Figure 3-16). Only 14 down-regulated genes were associated with these genomic 

regions, which imply the correlation of this E-box sequence with transcription activation 

rather than repression.  

 

 

Figure 3-15: Validation of ChIP-seq results by independent ChIP-qPCR experiments 

performed using chromatin from E12.5 mouse ventral midbrain.  

80% of the regions tested are enriched compared to negative control region. Primers 

amplifying a region in the Gli2 locus were used as negative control. Element 5 (E5) 

represents Foxa2 bound region in the Gli2 locus used as positive control.  Error bars 

represent SEM. Each ChIP was performed on chromatin samples from three 

biological replicates. * Enrichment of Foxa2 bound regions over the negative region 

in the ChIP samples was statistically significant (P < 0.05). 
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3.1.2.8 Otx2: a possible cofactor for Foxa2 function in DA progenitor specification 

Otx2 has recently been discovered to control the proliferating activity of midbrain 

DA progenitors and is also required to promote differentiation by activating the 

expression of Lmx1a either directly or indirectly (Omodei et al., 2008). Furthermore, 

Otx2 is suggested to regulate Shh expression and positioning in the system. (Omodei et 

al., 2008). Since Otx2 is also required for regulating Foxa2 direct targets, Shh and 

Figure 3-16: Gene ontology (GO) categories showing the most enriched biological processes 

of up regulated candidate targets between D3.5 and D5 of in vitro differentiation containing 

the enriched E-box sequence identified from the data set. 

 All categories displayed are of p-value<0.001 and are sorted according to fold change of the 

number of genes in the experiment list over the reference list  (whole genome) for each 

biological process. 
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Lmx1a, we chose to test if Otx2 binds directly to the genomic regions identified to be 

bound by Foxa2. ChIP-qPCR experiments were performed on E12.5 ventral midbrain 

tissue using Otx2 antiserum to capture Otx2 bound genomic regions. All the regions 

tested contained an Otx2 DNA binding motif that enhance the possibility of an Otx2 

interaction. The selected regions were Lmx1a CR2, Lmx1b CR1, Slit2, and Shh brain 

enhancer. Interestingly, Otx2 antiserum ChIP enriched for all the regions except for Slit2, 

and suggests the possible direct involvement of Otx2 in regulating these genes (Figure 3-

17).  

  

 

 

 

 

 

Figure 3-17: ChIP-qPCR experiments performed using chromatin from E12.5 mouse 

ventral midbrain using Otx2 specific antiserum. 

 All regions tested are enriched compared to negative control region except for the Slit2 

genomic region. Primers of an Otx2 unbound region in the Gli2 locus was used as 

negative control.. Error bars represent SEM. Each ChIP was performed on chromatin 

samples from three biological replicates. * Enrichment of Otx2 bound regions over the 

negative region in the ChIP samples was statistically significant (P < 0.05). 
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Otx2 binding to similar regions as Foxa2 lead us to ask the questions: is Otx2 a 

Foxa2 cofactor and are there more regions bound by both factors leading to more genes 

being co-regulated? To answer the first question we searched the FANTOM 4 database 

where data from a large-scale mammalian two-hybrid screen performed using cDNA of 

transcription factors in human provided a large pool of information for possible physical 

interactions. Surprisingly, the search identified only a few genes including Otx2 as being 

co-factors of Foxa2 (Figure 3-18). 

 

 

 

 

 

 

Figure 3-18: Possible Foxa2 cofactors predicted by FANTOM4. (A) Table of 

candidate Foxa2 cofactors and their respective gene names. (B) In purple, spheres 

connected by lines indicate the occurrence of physical interactions between the two 

factors sharing each end of the line.  
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To answer the second question, we decided to search the ChIP-seq data set for 

possible enrichment of the Otx2 motif.  The position weight matrix from Harvard 

Uniprobe database was used to search the data set (www.thebrain.bwh.harvard.edu). 

From this search 629 sequences were found to contain the Otx2 PWM. To establish 

statistical confidence for the motif search results, 1000 random datasets were generated, 

each with the same number of sequences as the ChIP-seq dataset, and with the same 

deoxynucleotide composition. The same parameters were used to search for the Otx2 

PWM in these random data sets. We found that the Otx2 PWM was not enriched in the 

random data sets compared to the Foxa2 ChIP-Seq data with a significance of P 

value<0.01. Furthermore the TSS of 54 up-regulated genes overlapped with these 629 

genomic regions. This data suggests that Foxa2 together with Otx2 may regulate a subset 

of the genes up regulated in the in vitro system. 

 In order to test this hypothesis, we analyzed the expression of the 54 genes that 

correlate with an Otx2 binding motif, in the ventral midbrain of both E10.5, 

En1Cre/+;Foxa1flox/flox;Foxa2flox/flox and En1Cre/+;Otx2flox/flox mutant mice. Of the 54 genes 

tested in the En1Cre/+;Foxa1flox/flox;Foxa2flox/flox mice, 24 were differentially regulated 

(Figure 3-19). Furthermore, 11 out of 24 Foxa2 dependant genes were also differentially 

expressed in the En1Cre/+;Otx2flox/flox mutant mice (Figure 3-20). These 11 genes are the 

most likely to require both Foxa2 and Otx2 direct inputs for their proper regulation. 

ChIP-qPCR experiments need to be performed using Otx2 antiserum to further validate 

the possible binding of Otx2 to these regions. (Please note, Slit2, Bmp7, Lmx1a, Lmx1b 

have been analyzed in Figure 3-14) 
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Figure 3-19: qPCR expression analysis of Foxa2 target genes that may be coregulated by 

Otx2.in ventral midbrains of En1Cre/+;Foxa1flox/flox;Foxa2flox/flox mice at E10.5. (A-C) Of the 

54 genes with genomic regions bound by Foxa2, that contains an Otx2 DNA binding motif 

24 are differentially expressed within these mutants.  * Fold change between mutant and 

wild type littermate (Control) is statistically significant with p-value<0.05. 
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3.1.2.9 Predictions of physical interaction of transcription factors regulated by 
Foxa2 in vitro 

 Transcriptional regulatory networks drive tissue specific spatial and temporal 

patterns of gene expression (Naef and Huelsken, 2005). These networks usually involve 

the assembly of transcription factors on DNA target promoter sequences of genes they 

regulate. Often these transcription factors do not act independently but form complexes 

with other transcription factors and members of the transcription regulation machinery 

(Ravasi et al., 2010). To test this hypothesis in our system, we used the Foxa2-bound 

targets whose expression are affected in En1Cre/+;Foxa1flox/flox;Foxa2flox/flox mutant 

embryos together with Foxa2 and Otx2 on FANTOM and searched for possible 

Figure 3-20: qPCR expression analysis of Foxa2 regulated target genes that may be 

coregulated by Otx2.in ventral midbrains of En1Cre/+;Otx2flox/flox mice at E10.5. (A-C) Of 

the 24 genes regulated by Foxa2, that contains an Otx2 DNA binding motif in their 

candidate regulatory regions, 10 are differentially expressed within these mutants and are 

likely to require an Otx2 input for their proper expression. In this case Lmx1a is used as 

control (Omodei et al., 2008)  * Fold change between mutant and wild type littermate 

(Control) is statistically significant with p-value<0.05. 
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interactions. Interestingly, other than Foxa2 interacting with Otx2 we see that Tle1 is a 

possible cofactor (Figure 3-21). Tle1 is part of the Groucho family of transcriptional 

repressors that play key roles in developmental processes (Santisteban et al., 2010). It has 

previously been shown in liver cells that Foxa proteins recruit Tle cofactors to the site of 

action and repress gene expression (Sekiya and Zaret, 2007). We therefore hypothesize 

that Foxa2 may act through Tle1 to repress the alternative cell fates. In addition, Foxa2 

interacts with Otx2 to induce the DA neuronal cell fate. These predictions also suggest 

that Foxa2 and Otx2 may be involved in a larger complex including Mitf, a known gene 

activator involved in melanocyte development, proliferation and survival (Kumasaka et 

al., 2005). Hence, Mitf may play similar roles in the mDA system during specification. 
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3.1.2.10 Identification of Lmx1a and Lmx1b regulatory elements 

Analysis of the phenotype of Lmx1a and Lmx1b double mutant embryos 

demonstrated overlapping essential reveals their roles in the specification and 

proliferation of mDA progenitors, and ensure their proper differentiation (Yan, 2008). In 

an attempt to further characterize the transcriptional regulators that act upstream of 

Lmx1a and Lmx1b in the midbrain we used an in vivo reporter assay to identify the cis-

acting sequences that regulate Lmx1a/b gene expression (Simmons, 2001). Two well-

conserved Foxa2-bound genomic regions identified from the ChIP-Seq data in both gene 

loci were used for independent ChIP-qPCR analysis (Figure 3-22). 

 

Figure 3-21: Physical interaction identified, using FANTOM4, of Foxa2 regulated 

transcription factors.   

In purple, Circles connected by lines indicate the occurrence of physical interactions 

between the two factors sharing each end of the line. Black arrows indicate positive 

regulation of expression. Black Arrows leading from factors other than Foxa2 are 

predicted by FANTOM4. Foxa2 and Otx2 possibly interact and cooperate to induce 

the DA neuronal fate. The Tle1/Foxa1/2 interaction is possibly required for the 

repression of alternative fates.  
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All four regions enriched for Foxa2 binding and confirmed the ChIP-Seq peaks 

identified for them. To further validate these regions in vivo, they were cloned in a LacZ 

reporter plasmid and injected into fertilized mouse embryos to assess their enhancer 

activity by X-gal staining at E10.5. Interestingly, three out of the four regions exhibited 

enhancer activity driving expression of the lacZ reporter gene to regions of the ventral 

CNS in transgenic mice (Figure 3-23). Both Lmx1a genomic regions CR1, and CR2 

activated LacZ expression in transgenic embryos. CR1 is 522 bp long and CR2 is 446 bp. 

Lmx1a CR1 gave reporter expression throughout the ventral neural tube that mimicked 

the Foxa2 expression pattern, where as Lmx1a CR2 gave an expression pattern similar to 

rostral domain of the Lmx1a endogenous expression pattern, i.e. in the caudal forebrain 

and anterior midbrain (Figure 3-23A and C). Identifying two enhancers for Lmx1a 

suggests the requirement of multiple signaling inputs to multiple cis-regulatory elements 

for the proper regional expression of this gene. One of the two regions tested for Lmx1b 

gave reporter expression (Fgure 3-23E). This region was named Lmx1b CR1 and is 206 

bp long. The LacZ expression pattern mimics very well the expression of Lmx1b in the 

ventral neural tube, and the future auditory neural tissue (Yan, 2008; Guo et al., 2007). 

Coronal sections through the midbrains of the embryos that gave restricted expression 

Figure 3-22 ChIP-qPCR experiments performed using chromatin from E12.5 mouse ventral 

midbrain using Foxa2 specific antiserum. 

 Lmx1a/b conserved regions are enriched for Foxa2 binding compared to negative control 

regions (-ve1, -ve2). The conserved region in the Corin gene locus is used as positive control. 

Error bars represent SEM. Each ChIP was performed on chromatin samples from three 

biological replicates. * Enrichment of Foxa2 bound regions over the negative region in the 

ChIP samples was statistically significant (P < 0.05). 
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patterns in the ventral midbrain indicate that LacZ expression was restricted to 

endogenous domains of Lmx1a and Lmx1b expression in the ventral midbrain (Figure 3-

25, 3-26). 
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Consensus binding sites for Foxa2 were identified in all enhancers supporting the 

view that Foxa2-dependent mechanisms exist to activate Lmx1a/b gene expression in the 

midbrain floor plate. Luciferase assays were carried out for all three enhancers to 

establish if Foxa2 exerts an input on the regulatory activity of these enhancers in P19 

cells. Co-transfection of Foxa2 with the Lmx1a CR1 and CR2 luciferase constructs 

shows a significant but not very high fold change of luciferase activity over the single 

transfections. This may be due to the presence of another co-activator since these 

enhancers already posses positive regulatory activity when compared to the empty 

luciferase vector. The presence of a repressor of Foxa2 activity may be possible, not 

allowing optimum Foxa2 regulation of these enhancers. Co-transfection of Foxa2 with 

the Lmx1b CR1 luciferase construct shows a significant and high fold change suggesting 

a strong Foxa2 input in the regulation of this enhancer. From these results we chose to 

mutate the Foxa2 binding site (Figure 3-24 B) found within the Lmx1b CR1 and perform 

the in vivo LacZ reporter assay. The LacZ expression of the mutated construct was 

Figure 3-23:LacZ reporter expression driven by the genomic regions identified to be 

bound by Foxa2 within the Lmx1a and Lmx1b gene loci.  

(A-B) Lmx1a CR1 has a broad expression pattern very similar to the Foxa2 expression 

pattern is the same developmental stage. 2/2 transgenics gave the same expression 

pattern (C-D) Lmx1a CR2 drives expression in a restricted domain within the rostral 

midbrain and most caudal forebrain regions similar to the Lmx1a expression pattern in 

those regions. 1/1 transgenic embryo gave this expression pattern (E-F) Lmx1b CR1 is 

sufficient to drive expression in the Lmx1b positive domains in the midbrain. 3/4 

transgenic embryos gave this expression pattern. (B, D, and F are whole mount ISH of 

Foxa2, Lmx1a and Lmx1b respectively. Modified from Epstein et al, 1996, and Yan, 

2008) 
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generally weaker and the midbrain LacZ expression was reduced to a large extent. These 

results clearly show the requirement of the Foxa2 site for the proper regulation of this 

enhancer. 

 

 

 
 

 

 
Figure 3-24: The Foxa2 DNA binding motif within the Lmx1b CR1 is required for 

driving expression to the floor plate of the midbrain and in caudal CNS regions. 

 (A) Wild type expression pattern. Red box indicates the Foxa2 DNA binding motif. 

(B) Foxa2 motif mutated construct drives very weak expression and the majority of 

the midbrain specific expression was lost. 2/2 transgenic embryos gave the same 

expression pattern. 
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 Figure 3-25: Coronal sections through the midbrain of Lmx1a CR2 

transgenic mouse at E10.5. 

 LacZ expression pattern is restricted to the floor plate in the rostral 

midbrain. It is unclear whether LacZ expression is restricted to the 

floor plate or is also expressed in more dorsal progenitors in the 

anteriormost regions based on these sections, however the 

anteriormost expression mimics Lmx1a expression in wild-type 

embryos (Fig. 3-23D). 
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Figure 3-26: Coronal sections through the midbrain of the Lmx1b CR1 

transgenic mouse at E10.5.  

Expression pattern is restricted to the floor plate region throughout the A-P 

axis, similar to Lmx1b expression in wild-type embryos at this stage. 
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3.1.3 Identification and characterization of Foxa2 binding events in vivo 

In the next chapters we present results generated from Foxa2 ChIP-Seq experiments 

performed on in vivo E12.5 and E14.5 ventral midbrain dissected tissue. For illustrative 

reasons many of the regions identified as bound by Foxa2 will be identified by black 

blocks rather than the peaks you have been shown up to this point. 

 

3.1.3.1 Foxa2 ChIP-seq performed on E12.5 and E14.5 ventral midbrain tissue 

To identify genes regulated by Foxa2 that are involved in differentiation we chose 

a different approach than the previous experiment. We dissected ventral midbrain tissue 

at  time points where differentiation is actively taking place. The proneural gene Neurg2 

and the orphan nuclear receptor Nurr1, expressed in immature and mature neurons, are 

key markers of this process. At E12.5 the ventral midbrain stains for Neurog2 in a salt 

and pepper pattern and an overlap with Nurr1 can clearly be observed (Ferri et al., 2007). 

Given this pattern of expression, E12.5 is an appropriate time point to model early 

differentiation and study the role of Foxa2 in this process. 

In addition of investigating the role of Foxa2 function in early differentiation we 

wanted to complement the study with an additional investigation of the role of Foxa2 in 

late differentiation of mDA neurons. The time point chosen for this study is E14.5 where 

neurogenesis has largely ceased and only mature neurons can be identified by staining for 

Nurr1 and TH, where most if not all Nurr1+ cells stain for TH, indicating that not many 

immature neurons are present.  

Figure 3-27 indicates the ventral midbrain regions dissected and harvested for the 

ChIP-seq analysis. This procedure was performed for both E12 and E14 ChIP-Seq assays. 
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Figure 3-27:Schematic of E14.5 midbrain dissection limits defining the mDA 

domain.  

Line 1 indicates the dorsal limit. Lines 2 and 3 indicate the harvested area, 

including the mDA domain used for the ChIP experiments. (Modified from Jacobs, 

2009) 



 115 

The quality of the in vivo data sets was assessed according to known and newly 

discovered positive controls from the in vitro analysis. Enhancers known to be bound by 

Foxa2, such as the Shh brain enhancer, the Lmx1a CR2, Lmx1b CR1 and the Aadc 

neuronal promoter, were detected by our in vivo ChIP-Seq assays, and all these bound 

regions had a FDR well under 5% (Figure 3-29). For the purpose of these studies we 

assigned 5% FDR as the cut off point for the regions to be included in the analysis.  

Furthermore, the Foxa2 motif was enriched in both E12 and E14 ChIP-seq data sets 

(Figure 3-28B-C). We also observed 1407 (20%) regions in common between the in vitro 

and E12.5 data sets, and 1717 (25%) regions were in common between the E12 and E14 

data sets. Of these regions over 40% were in common with the in vitro data set, further 

confirming the high quality of the data in all three ChIP-seq experiments.  

. 
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Figure 3-28:. (A) Schematic of the Shh gene locus extracted from the UCSC genome browser. 

Foxa2 peaks can be observed in the Shh floor plate enhancer region in all three data sets. (B) De 

novo motif enriched in E12 and E14 ChIP-seq data sets identified using MEME search engine. 

The motif is identical to the Foxa2 DNA binding motif. 
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Figure 3-29: Schematic of the genomic regions bound by Foxa2 in all three data sets.  

(A-C) Foxa2 peaks can be observed in the gene loci of Corin, Lmx1a, and Lmx1b previously 

identified in the in vitro data set. (D) Foxa2 peaks can be observed in the AADC locus in all 

three data sets. At E12 a Foxa2 peak is observed in the AADC neuronal promoter described 

by (Aguanno et al., 1995). (Each black block indicates the area covered by the detected peak) 
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3.1.3.2 Characterization of ChIP-Seq peaks identified using E12.5 ventral 
midbrain tissue 

From the E12.5 ChIP-seq analysis we identified 7008 high confidence peaks. 

Interestingly, 54% of peaks were located within an annotated gene region. Only 18% of 

the peaks were located within 2 kb upstream or downstream of the TSS of annotated 

genes, while 34% of the peaks were located within 10 kb of the TSS (Figure 3-30). Out 

of peaks overlapping genes 24% were localized within the first intron (Figure 3-31 A). 

We also observed that over 30% of all peaks were more than 100 kb from the closest 

down stream gene (Figure 3-31 B). Surprisingly, 45% overlapped conserved genomic 

regions, identical to the in vitro data, suggesting that Foxa2 binding to conserved 

sequences is a key characteristic of its binding to the genome. Similar to the in vitro data 

Foxa2-binding sites are observed at a range of locations across the mouse genome.  
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Figure 3-30: Percentage of binding sites located at various distances from TSS. 

Recruitment at distal regions from the TSS is a general characteristic of Foxa2 

genomic recruitment 

Figure 3-31. (A) Distribution of peaks within genes. Majority of peaks are distributed within 

intronic regions with 24% identified within the first intron. (B) Distribution of the peaks from the 

nearest downstream gene. Most of the peaks are found between 10 and 100 kb away from the 

nearest downstream gene. 
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3.1.3.3 Characterization of ChIP-seq peaks identified using E14.5 ventral midbrain 
tissue 

CHIP-seq performed on E14.5 ventral midbrain tissue identified 8346 high 

confidence peaks. Of these peaks 57.5% overlapped a gene region. Peaks identified 

within 2kb of the TSS of annotated genes represent 21% of the total number of peaks, 

and 38% were located within 10 kb (Figure 3-32). 20% of peaks within genes were 

located within the first intronic region (Figure 3-33 A). Around 30% of the peaks were 

over 100kb away from the closest downstream gene (Figure 3-33 B). Out of all peaks 

41% overlapped with conserved genomic regions further confirming Foxa2 binding to 

conserved sequences as a key characteristic. 

 
 

  
Figure 3-32: Percentage of binding sites located at various distances from TSS. 

Recruitment at distal regions from the TSS is a general characteristic of Foxa2 

genomic recruitment. An increase in recruitment of Foxa2 closer to TSS of 

annotated genes is observed. 



 122 

 
 

 

 

 

 

 

Figure 3-33: (A) Distribution of peaks within genes. Majority of peaks are distributed within 

intronic regions with 2o% identified within the first intron. A reduction compared to the other two 

data sets. (B) Distribution of the peaks from the nearest downstream gene. Most of the peaks are 

found between 10 and 100 kb away from the nearest downstream gene. 
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3.1.3.4 Overlap of ChIP-Seq lists with microarray time course expression assays  

 

To identify functionally relevant genes, we chose to overlap the Foxa2-bound targets 

with expression profiling data of floor plate regions of the midbrain where the mDA cells 

reside. In the lab, a former postdoctoral fellow dissected midbrain floor plate regions 

from E10.5, E11.5, E12.5 and E14.5 embryos and analyzed the expression profile of 

these cells by microarray experiments using Illumina MouseRef-8 v 2.0 expression 

beadchip platforms. These expression data was then analyzed using Gene Spring (Agilent 

technologies) to study the temporal dynamics of gene expression in this tissue (Figure 3-

35, 3-36). We identified 5549 genes that were differentially expressed (DE) between the 

time points described. Of these genes 24% mapped with at least one peak from the in 

vitro ChIP-seq data set. Similarly, 22% of DE genes mapped with peaks from the E12 

ChIP-seq data set, and 26% mapped with the E14 ChIP-seq data set. Interestingly, the 

distribution of the Foxa2 peaks from the TSS of the DE genes indicate a 10% increase of 

peaks identified within 2kb of the TSS when comparing the in vitro ChIP-seq data with 

the E12.5 ChIP-seq data, and a 15% increase was observed when comparing the in vitro 

data with the E14.5 data set (Figure 3-34). This observation is not surprising since a 

similar distribution can be observed on the genome wide level as well. This data suggests 

that Foxa2 binding shifts slightly closer to promoter regions during differentiation of 

mDA neurons. This is comparable with adult liver genome wide studies of Foxa2, where 

many binding events can be identified close to the TSS, unfortunately these studies did 

not compare different developmental stages (Wederell et al., 2008). 
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3.1.3.5 Foxa2 binding profile of peaks associated with early and late onset genes  

We next decided to look at the distribution of Foxa2 binding sites of genes with 

specific expression trends. DE genes from the in vivo microarray time course experiment 

were clustered into 12 sub-clusters according to Pearson correlation with P-value < 0.001. 

This allowed us to choose groups of genes with specific expression patterns of biological 

importance for the development of midbrain DA neurons. Two groups of genes were 

chosen according to their co-clustering with known progenitor and mature DA neuronal 

markers. A group of 342 genes that included progenitor markers such as Lmx1a, Foxa2, 

Slit2, and Corin are described as early onset genes, and the group of 1605 genes that 

includes mature neuronal markers such as Th, Pitx3, and Ddc are described as late onset 

genes (Figures 3-35, 3-36).  

Figure 3-34:Comparison of genome wide Foxa2 binding profile with DE candidate targets. 

Distribution of peaks within 2 kb of TSS of all annotated genes (Genomic binding) and of DE 

targets reveals that the shift of Foxa2 binding towards the TSS of genes in the in vivo data sets 

is a general characteristic of Foxa2 genomic distribution. 
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Figure 3-35: Gene expression time course assay of in vivo early onset 

genes (E10-E14). Genes presented: Foxa2, Lmx1a, Slit2, Corin, Shh, and 

Bmp7. 
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For the purpose of this study we carried out the analysis of peaks from the in vivo 

ChIP-seq data sets that mapped with early and late onset genes. Of the early onset genes 

121 overlapped with the E12 ChIP-seq data set and 132 with the E14 ChIP-seq data set. 

Also, 489 of the late onset genes overlapped with the E12 data set and 588 genes 

overlapped with the E14 data set. The distribution of the Foxa2 binding sites from the 

TSS of these genes is similar to the genome wide observed distribution  (Table 2 and 3).  

Figure 3-36: Gene expression time course assay of in vivo late onset 

genes (E10-E14). Genes presented: TH, Pitx3, and Ddc. 
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Table 2: Distribution of peaks identified in all three data sets (E12, E14, in 

vitro) from the TSS of early and late onset genes expressed in vivo. The 

majority of the peaks can be identified within 100 kb of the TSS of annotated 

genes. An increase can be detected in the number of peaks within 2kb of the 

TSS between in vitro and in vivo ChIP-seq assays. 
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Table 3: Distribution of peaks identified in all three data sets (E12, E14, in vitro) from the 

TSS of all annotated genes. The majority of the peaks can be identified within 100 kb of the 

TSS of annotated genes. An increase can be detected in the number of peaks within 2kb of the 

TSS between in vitro and in vivo ChIP-seq assays. 
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3.1.3.6 GO term analysis reflects Foxa2 possible functions during mDA neuron 
differentiation  

In order to establish which biological processes may be regulated by Foxa2 at E12 

and E14 involved in midbrain DA neuronal development, GO term analysis was 

performed on the early and late onset genes that overlapped with the E12 ChIP-seq data 

set, and on the late onset genes that overlapped with the E14 ChIP-seq data set. As 

expected, early onset genes bound by Foxa2 at E12 when neurogenesis is actively taking 

place are enriched for terms involved in neuron fate commitment, regulation of 

neurogenesis, and axon guidance (Figure 3-37). It was interesting to observe in the late 

onset genes bound at E12 to be enriched for terms involved in regulation of synaptic 

transmission and neuron projection development, processes which are usually active at 

late stages of neuronal development, suggesting the involvement of Foxa2 in later 

neuronal processes during differentiation (Figure 3-38) (Cowan M W et al., 1997).  
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Figure 3-37: Gene ontology (GO) categories showing the most enriched biological processes of 

early onset candidate targets identified from the E12 ChIP-seq data set. 

 All categories displayed are of p-value<0.001 and are sorted according to fold change of the 

number of genes in each biological process in the experiment list over the reference list (whole 

genome). 
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Figure 3-38:Gene ontology (GO) categories showing the most enriched biological processes of 

late onset candidate targets identified from the E12 ChIP-seq data set. 

 All categories displayed are of p-value<0.001 and are sorted according to fold change of the 

number of genes in each biological process in the experiment list over the reference list (whole 

genome). 
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Late onset genes bound at E14.5 by Foxa2 reveal terms enriched for ATP hydrolysis 

coupled with proton transport, dendrite morphogenesis, and regulation of neuronal 

synaptic plasticity (3-40). This suggests later roles of Foxa2 in the regulation of energy 

utilization in the cell coupled with late neuron differentiation processes. Since many of 

these genes bound at E14.5 are also bound and may be regulated at E12, we perform the 

GO term analysis on genes uniquely bound at E14.5 (Figure 3-42). The regions bound 

only at E14.5 were obtained by subtracting from the E14.5 ChIP-Seq candidate gene list 

all the candidate target genes bound at E12. This should produce a list enriched in 

candidate genes uniquely bound at E14.5. To further confirm this, independent ChIP-

qPCR assays with Foxa2 antiserum were performed on regions uniquely bound at E14.5, 

E12.5 and on regions shared at both stages (Figure 3-39). The results suggest that the 

E14.5 unique Foxa2 bound gene list is truly enriched with regions only bound at E14.5 

and the genes mapped to these regions are likely not bound and consequently not 

regulated at E12.5. Interestingly, the GO terms enriched for Foxa2 candidate targets 

unique for the E14.5 list are involved in transmission of a nerve impulse (Figure 3-41). 

This result suggests the possible requirement of Foxa2 at E14.5 for the late functions of a 

neuron in transmitting its signals.  
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Figure 3-39 ChIP-qPCR assays performed on chromatin from E12.5 and E14.5 

mouse ventral midbrain using Foxa2 specific antiserum. (A) Foxa2 binding to  

regions unique to the E12.5 ChIP-seq list. (B) Foxa2 binding to regions unique to 

the E14.5 ChIP-Seq list. (C) Foxa2 binding to regions shared between both the 

E12.5 and E14.5 ChIP-Seq lists. Error bars represent SEM. Each ChIP was 

performed on chromatin samples from three biological replicates. * Enrichment of 

Foxa2 bound regions over the negative region in the ChIP samples was statistically 

significant (P < 0.05). 
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Figure 3-40:Gene ontology (GO) categories showing the most enriched 

biological processes of late onset candidate targets identified from the E14 

ChIP-seq data set.  

All categories displayed are of p-value<0.001 and are sorted according to fold 

change of the number of genes in each biological process in the experiment list 

over the reference list (whole genome). 
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Figure 3-41: Gene ontology (GO) categories showing the most enriched biological 

processes of late onset candidate targets unique to the E14 ChIP-seq data set.  

All categories displayed are of p-value<0.001 and are sorted according to fold 

change of the number of genes in each biological process in the experiment list over 

the reference list (whole genome). 
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3.1.3.7 Validation of late onset gene targets in Nestin-Cre Foxa1/2 flox mutant mice 

For validation purposes of the functional relevance of Foxa2 binding to its target 

genes, 30 late onset genes, including transcription factors, bound by Foxa2 at both E12 

and E14 were selected for testing in the NestinCre/+;Foxa1flox/flox;Foxa2flox/flox conditional 

mutant mouse model. In this model the midbrain DA progenitors are specified but do not 

fully differentiate (Kele et al., 2006). Thus, the main genes that are affected in these 

mutants are late onset genes that are likely activated during differentiation. From RT-

qPCR expression assays we can observe that 50% of the genes analyzed are affected in 

the mutants compared to their wild type littermates (Figure 3-42). This data provides 

further confidence for the quality of the lists for predicting Foxa2 regulated genes.  

 

 

 

 

 

Figure 3-42: RT-qPCR validation of Foxa2 targets in ventral midbrain tissue of 

NestinCre/+;Foxa1flox/flox;Foxa2flox/flox mice at E12.5. Expression analysis by qPCR of 

candidate target transcription factors, and genes involved in other functions. * Fold change 

between mutant and wild type littermate (Control) is statistically significant with p-

value<0.05. 
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3.1.3.8 Prediction of physical interaction of transcription factors regulated by 
Foxa2 in vivo 

From the previous assay we identified late onset transcription factors regulated by 

Foxa2 and bound at both stages E12 and E14. It is very interesting to discover 

transcription factors that require Foxa2 input at multiple developmental time points. This 

suggests that these factors may be of much importance for the regulation of 

differentiation. To further classify these transcription factors, we used FANTOM 4 to 

identify any possible interactions these transcription factors may have between them 

(Figure 3-43). Notably, two interaction clusters were identified. The first involves the 

interaction of nuclear receptors Esrrb, Ncoa2 (Src-2), and Rora. It has previously been 

shown that Foxa2 interacts with nuclear receptors to induce its target genes (Carroll et al., 

2005). The second cluster identified involves the interaction of nuclear factors Nfib and 

Nfic. These factors are very interesting since they seem to play important roles in 

regulating neurogenesis (Kumbasar et al., 2009). Also the BHLH-PAS member Arnt2 is 

predicted to be upstream of these nuclear factors and may be involved in mDA neuron 

development in mouse since it has such a role in Zebrafish DA neuron development 

(Löhr et al., 2009). 
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3.1.3.9 Close correlation of Foxa2 binding events with Gli1 bound regions 

The zinc finger transcription regulators Gli1-3 mediate Shh morphogen activity 

through binding to their consensus sequence and controlling the transcription of their 

target genes (Hooper and Scott, 2005). A recent ChIP-on-chip study has identified 

multiple genomic regions bound by Gli1 (Vokes et al., 2007), where many of the 

associated transcripts are components of Shh signaling. Also, many of these regions have 

already been published as enhancers regulated by Gli activity (Sasaki, 1997; Agren, 

Figure 3-43: Physical interaction predicted by FANTOM4, of Foxa2 regulated 

transcription factors.  

 In purple, Circles connected by lines indicate the occurrence of physical interactions 

between the two factors sharing each end of the line. Black arrows indicate positive 

regulation of expression. Black Arrows leading from factors other than Foxa2 are 

predicted by FANTOM4. Nuclear receptors (Essrb, Rora, and Ncoa2) regulated by 

Foxa2 possibly interact and cooperate to induce downstream target genes.  
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2004; Hallikas, 2006; Dai, 1999; Santagati, 2003). Notably, Foxa2 bound regions 

identified in our ChIP-seq data sets are observed within the Gli1 ChIP-on-chip peaks 

from the mentioned study, suggesting a tight regulatory loop between Foxa2 and Shh 

signaling (Table 4). Further more, Foxa2 binding events have been identified in both Gli1 

and Gli2 loci (Element1-5), whereas Gli1 only regulates its own enhancer (Figure 3-44). 

This data is supported by genetic analysis of the Wnt1Cre/+;Foxa2flox/flox mouse embryos 

performed by a former student in the lab (Appendix D: Figure 4-13). It was observed that 

Foxa2 acts by repressing Gli1 and Gli2 as well as Ptch1 in the mDA system. Together 

with results from our ChIP-seq data we suggest that Foxa2 repression of these genes is 

direct. 

 

 

 

 

 

 

Table 4:Foxa2 binding to genomic regions identified in a Gli1 ChIP-on-

chip study (Vokes et al., 2007). 

 Regions are described as base pairs away from the TSS. The Foxa2 ChIP-

Seq data sets that present the binding events in each case are mentioned. 

Foxa2 is shown to bind directly to enhancer regions regulating components 

of the Shh signaling pathway. 
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Figure 3-44: Occupancy of Gli2 gene conserved elements by Foxa2. (A) Schematic diagram of 

the Gli2 locus indicating peaks generated by Foxa2 in vitro ChIP-Seq experiment (E1-E5). (B) 

Foxa2 binding sites (in yellow) identified by the Jaspar database and their conservation.(C) 

ChIP experiments using chromatin from E12.5 ventral midbrain tissue validating the ChIP-

Seq results using Foxa2 anti serum or anti-IgG antibody (M: Mock IP). Error bars represent 

SEM. Each ChIP was performed on chromatin samples from three biological replicates, and 

enrichment of all Gli2 elements in the Foxa2 ChIP samples compared with the mock ChIP 

was statistically significant (P < 0.05). 
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3.1.3.10 Differential binding of Foxa2 on promoters driving the expression of the 
DA synthesis enzymes TH and AADC 

The possible role of Foxa2 in inducing TH and AADC (also known as Ddc) has 

previously been described (Bae et al., 2009; Raynal et al., 1998 2006). Interestingly, 

AADC expression precedes that of TH in midbrain DA neurons. AADC can already be 

detected in these cells at E10.5 whereas the first TH+ cells can be detected at E11.5 

(Castelo-Branco and Arenas, 2006; Mavromatakis, 2006). Identifying the mechanism 

responsible for this differential expression of TH and AADC will provide useful 

information regarding the control of the developmental timing of gene expression. Lee et 

al, have described the efficient binding of Foxa2 to the TH promoter through ChIP assays 

only in the presence of Nurr1, suggesting that Nurr1 acts as a recruitment factor for 

Foxa2 on this region. The authors have also identified the Foxa2 DNA binding sequence 

within the TH promoter that is required for the Foxa2 specific induction of luciferase 

activity. Raynal et al. identified the Foxa2 DNA binding motif within the AADC 

neuronal promoter and have shown Foxa2 binding to this region through electrophoretic 

mobility gel shift assays. Luciferase assays of AADC neuronal promoter in the context of 

P19 cells show a Foxa2 specific induction that further strengthens the argument of the 

presence of a Foxa2 input (Table 5). 

We performed ChIP assays and quantified with qPCR to assess Foxa2 binding to 

these regions at both stages E10.5 and E12.5 of ventral midbrain (VM) development 

(Figure 3-46). We observe clear Foxa2 binding to the AADC neuronal promoter at E10.5 

but this is not the case for the TH promoter at this stage. Foxa2 binding is observed at 

both promoters in ChIP assays performed on E12.5 VM (Figure 3-46). This result can be 

partially explained by comparing the Foxa2 DNA binding motifs of both promoters. The 
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Foxa2 motif in the AADC neuronal promoter is identical to the known Foxa2 motif (high 

affinity) providing the possibility of strong protein/DNA interaction (Figure 3-45). 

Whereas the motif identified in the TH promoter by Lee et al. is not a perfect match for 

the Foxa2 DNA binding motif (low affinity), indicating that Foxa2 may not interact 

strongly at this sequence. These results suggest that Foxa2 requires another transcription 

factor or higher concentration of Foxa2 are required for binding to the low affinity Foxa2 

motif in the TH promoter.  

 

 

 

 

Figure 3-45: Comparison of the Foxa2 DNA binding domain defined 

by the Jaspar base with Foxa2 bound sequences in the AADC 

neuronal promoter and the TH promoter. 
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Figure 3-46: ChIP-qPCR assays performed on chromatin from E10.5 and E12.5 mouse ventral 

midbrain using Foxa2 specific antiserum. (A) Foxa2 binding to promoter regions of the AADC 

neuronal promoter and the TH promoter at E10.5 (B) Foxa2 binding to promoter regions of 

the AADC neuronal promoter and the TH promoter at E12.5. Foxa2 binds to both promoter 

regions only at E12.5 compared to binding only to the AADC promoter at E10.5. Error bars 

represent SEM. Each ChIP was performed on chromatin samples from three biological 

replicates. * Enrichment of Foxa2 bound regions over the negative region in the ChIP samples 

was statistically significant (P < 0.05). 
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3.1.3.11 Luciferase enhancer analysis of Foxa2 bound regions suggests the 
requirement of co-factors 

To further analyze the mechanisms governing the regulation of Foxa2 function we 

performed luciferase enhancer reporter assays on genomic regions bound by Foxa2 that 

also contain, Lmx1a, Otx2 and/or Nurr1 binding motifs, since genetic data predicts that 

these factors cooperate with Foxa2 to perform their function (Yan, 2008; Perez-Balaguer 

et al., 2009; Lee et al., 2010; Rascle et al., 2008; Uniprobe, Jaspar database). These 

regions were divided into two groups according to the transcripts they are predicted to 

regulate, progenitor markers (First nine) and mature neuron markers (Last 4) (Table). The 

genomic regions of mature neuron markers are tested for Foxa2, Lmx1a and Nurr1 

induction, whereas the progenitor markers are tested for Foxa2, Lmx1a and Otx2 

induction. Interestingly, Foxa2-mediated effect was observed on 70% (9/13) of the 

regions suggesting Foxa2 may require other factors to induce a subgroup of its targets. 

Otx2 can induce only 3 of the nine regions it was tested on and only one region (Bmp7) 

show cooperative interaction with Foxa2 (Table 5). This may imply that not many targets 

co-regulated by Foxa2 and Otx2 were tested, or that Otx2 interacts with Foxa2 to induce 

a very specific subset of genes. Surprisingly, Lmx1a had an effect on the enhancer 

activity of 90% of the regions (9/10) tested. Lmx1a and Foxa2 had a synergistic effect on 

the enhancer activity of four of these regions. Furthermore, Foxa2 and Lmx1a together 

but neither of the single factors alone stimulated the enhancer activity of genomic regions 

of Slit2 and Pitx3 (Figure 3-47). These results strongly suggest that Foxa2 and Lmx1a 

cooperate in inducing this subset of regulatory elements. Out of the four regions tested 

with Nurr1, three show combinatorial effect with Foxa2. This indicates a possible 
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interaction of Foxa2 with Nurr1 to affect these regulatory elements. Further studies need 

to be performed to dissect these interactions.  

 
 

 

 

 

 

 

Figure 3-47: Synergistic relationship of Foxa2 with Lmx1a and Nurr1. 

(A) Synergistic activation of the Slit2 enhancer by Foxa2 and Lmx1a. (B) 

Synergistic activation of the Pitx3 enhancer by Foxa2 and Lmx1a or Nurr1. 
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Table 5: Summary of the luciferase assays performed on regions bound by Foxa2 in vitro and in 

vivo. F: Foxa2, L: Lmx1a, O: Otx2, N: Nurr1, F+L: Cotransfection of Foxa2 and Lmx1a, F+O: 

Cotransfection of Foxa2 and Otx2, F+N: Cotransfection of Foxa2 and Nurr1. +: Significant Fold 

change of cotransfections of Luciferase construct with transcription factors compared to 

transfection of the Luciferase construct alone but does not illustrate combinatorial effect. 

(Inductive effect ). ++: Significant fold change of cotransfections of the Luciferase constructs 

with transcription factors compared to transfection of the Luciferase construct alone and also 

illustrates synergistic effect. (Inductive effect). - : Significant fold change of cotransfections of 

Luciferase constructs with transcription factors compared to transfection of the Luciferase 

construct alone but does not illustrate synergistic effect. (Repressive effect). -- : Significant fold 

change of cotransfections of Luciferase constructs with transcription factors compared to 

transfection of the Luciferase construct alone and also illustrates synergistic effect. (Repressive 

effect). Red dot indicates no effect.  
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3.1.3.12 Corin and Slit2 are affected in the Shh-Cre Lmx1a (dreher)/Lmx1b Flox 
double mutant mice  

We have shown previously that Foxa2 binds to genomic regions close to the TSS of 

many genes expressed in the ventral midbrain. Corin and Slit2 show a restricted 

expression within the mDA progenitor domain. The luciferase assays performed on 

genomic regions close to the TSS of these genes indicates that both Foxa2 and Lmx1a 

have an input in regulating these regions. Expression analysis of these genes through ISH 

indicates that these genes are lost in the ShhCre/+ Lmx1adrdr/Lmx1bfloxflox mutant mouse 

embryos compared to their wild type littermates (Figure 3-49). Moreover, ChIP-qPCR 

assays with Lmx1b antiserum suggest the direct binding of Lmx1b to the Corin and Slit2 

genomic regions identified from the Foxa2 ChIP-Seq analysis (Figure 3-48). This result 

confirms further the requirement of both Foxa2 and Lmx1a for the proper expression of 

these genes and the mechanism by which this occurs is through binding and regulating 

the identified Corin and Slit2 enhancers. In vivo LacZ reporter analysis of these 

enhancers is required to further confirm this observation.  
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Figure 3-48: ChIP-qPCR assays performed on chromatin from E12.5 mouse ventral midbrain 

using Lmx1b specific antiserum. Lmx1b binding to Enhancer regions close to the Corin ans 

Slit2 TSS. Wnt1 promoter region was used as positive control (Chung et al., 2009). Error bars 

represent SEM. Each ChIP was performed on chromatin samples from three biological 

replicates. * Enrichment of Lmx1b bound regions over the negative region in the ChIP 

samples was statistically significant (P < 0.05).  

Figure 3-48: Foxa2 targets Corin, and Slit2 are affected 

in the ShhCre/+ Lmx1adrdr/Lmx1bfloxflox mouse embryos.  

Slit2 and Corin are lost in these mutants indicating that 

Lmx1a and lmx1b are required for their proper 

expression. (Kind contribution by Dr. Martin Levesque) 
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4. Discussion 

 

Degeneration of midbrain DA neurons is observed at the onset of Parkinson’s 

disease. The detailed study of the transcriptional network involved in the development of 

these neurons will assist in future treatment of this disease. Genetic data for the Forkhead 

transcription factor Foxa2 has shown it to play an important role in the development of 

midbrain DA. The recent advances in microarray and sequencing technologies have made 

it possible to map the genome wide recruitment sites of transcription factors in living 

cells. This has allowed the identification of gene regulatory circuitry associated with 

developmental processes. This thesis presents genome wide DNA binding analysis of 

Foxa2 at two important time points of midbrain DA neuron development: Specification 

(in vitro progenitors), and differentiation (E12.5, and E14.5 ventral midbrain tissue). 

4.1 Foxa2 genomic recruitment at distant regions from the TSS 

To identify the target genes regulated by Foxa2 we applied ChIP combined with 

massively parallel sequencing. Characterizing the position of the DNA interaction sites 

relative to TSS of genes in three ChIP-Seq data sets reveals that only a small fraction of 

the Foxa2 bound regions are found within promoters, whereas the majority are found at 

large distances from annotated genes or within introns. This data is in line with previous 

ChIP-Seq studies performed on Foxa2 (Wallerman et al., 2009). A large proportion of 

these sites are conserved throughout many species suggesting that many of these regions 

are cis-regulatory elements exerting their regulation on promoters from a distance, or 

they may be regulating genes that have not yet been annotated. The wide distribution of 

the Foxa2 binding sites indicates that studies on the transcription factor activity of Foxa2 
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should not be limited to promoter regions as was previously carried out in ChIP-chip 

studies since this may lead to conclusions that may not be entirely accurate (Odom et al., 

2007).  

Further experimentation is required to establish a detailed map of the distal cis-

regulatory elements that are bound and regulated by Foxa2 and identifying the effected 

transcription. This could be achieved by a large-scale enhancer reporter analysis, where 

the Foxa2 bound regions are isolated and amplified with subsequent cloning into reporter 

constructs (Luciferase or LacZ). This way producing a library containing the possible 

Foxa2 bound cis-regulatory elements. These constructs would then be used for screening 

in appropriate cell lines. Finally, sequencing of the genomic regions that pass the 

screening will reveal their genomic coordinates. Although this method will not overcome 

the difficulty of associating the cis regulatory elements with their preferred regulated 

transcripts, since any gene from any direction is a possible candidate, nonetheless, it does 

provide important data for which of the Foxa2 bound regions also demonstrate enhancer 

activity. This approach will be very difficult to perform since our data sets suggests that 

Foxa2 is bound to many thousands of distal regions that differ depending on the 

developmental stage the experiment is performed at. Also, enhancer analysis in cell lines 

is very context dependant and thus cell lines need to be chosen carefully.  
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4.2 Possible functions of Foxa2 during the specification, and 
differentiation of midbrain DA neurons revealed by GO term 
analysis 

GO term analysis has been widely used for the association of genes identified in 

large-scale experiments with known biological processes (Koudritsky and Domany, 

2008). In this study with the aid of GO term analysis we identified possible global 

functions of Foxa2 during the specification, and differentiation of midbrain DA neurons. 

Foxa2 direct targets identified at the DA progenitor stage were associated with DE genes 

during the specification process of the DA progenitor fate. We observed that Foxa2 was 

bound to genes up regulated and down regulated during this process suggesting a possible 

dual role of Foxa2 as an inhibitor and activator of gene expression. The up regulated 

genes bound by Foxa2 were highly enriched with terms involved in early neuronal 

development whereas the genes that were down regulated were highly enriched for terms 

involved in the development of alternative fates such as cardiac muscle. These data 

suggest potential roles for Foxa2 in inducing the neural fate and inhibiting the alternative 

fates. It is important to investigate the mechanisms that help Foxa2 distinguish between 

its roles as an activator or repressor. Co-factors such as Tle1 (Groucho1) have been 

shown to be recruited by Foxa2 on the regulatory elements of genes that are destined to 

be repressed (Santisteban et al., 2010). It will be very interesting to see if the same model 

applies for the repression of genes identified in our system since Tle1 is expressed and 

may perform similar roles. 

The Foxa2 target genes identified at E12.5 are enriched with terms involved in 

neural fate commitment, neuron development and neurogenesis. Finally, terms enriched 

at E14.5 indicate the subsequent roles of Foxa2 in regulating genes involved in synaptic 
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and nerve impulse transmission. These results suggest that Foxa2 may play very 

important roles during DA neuron differentiation and their mature functional aspects.  

The study of the regulatory elements controlling the expression of these genes will 

provide insightful information for the mechanisms involved in the distinct regulation of 

the developmentally early and late genes. The first step will involve the careful grouping 

of the elements according to the timing of expression of the associated genes and analysis 

of the DNA sequence for transcription factor motifs, in the attempt to identify common 

signaling inputs involved in their regulation. 

4.3 Foxa2 function regulated by co-factors 

Gene expression is controlled by regulatory elements bound by combinations of 

transcription factors. Foxa2 expression is much broader than the domain where mDA 

neurons reside and this suggests that there may be another co-factor regulating Foxa2 DA 

specific functions. Hence, the identification of co-factors that function together with 

Foxa2 in regulating DA neuron development is crucial for understanding this process. 

ChIP-seq is quickly proving to be a very efficient way to identify such cofactors for your 

gene of interest (Motallebipour et al., 2009; Wallerman et al., 2009).  

4.3.1 E-box binding proteins may cooperate with Foxa2 in early specification and 
neurogenesis of midbrain DA neurons 

 In our study we identified an E-box motif (CAGCTG) that is enriched in the in vitro 

data set. This motif is very similar to the DNA binding motifs of two basic-helix-loop-

helix transcription factors Mash1 (Ascl1), and AP-4 (Castro et al., 2006; Jung and 

Hermeking, 2009). Mash1 is usually an activator whereas AP-4 is usually an inhibitor of 

transcription (Kim et al., 2006). This motif is highly enriched in genomic regions 
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associated with genes that are up regulated in the in vitro DA progenitor model, thus 

supporting the possibility that this motif may be bound by Mash1 or another E-box 

binding protein that functions as an activator. This sequence was not enriched in the in 

vivo data sets suggesting the E-box binding co-factor may be part of an early DA 

specification transcription factor combinatorial code. 

It has recently been shown that midbrain DA neurons in Ngn2 mutant mice fail to 

develop normally mainly due to a block in generation of Nurr1+ precursors. This is 

observed by a 66% reduction in TH+ neurons at the end of the neurogenic period (E14.5) 

(Kele et al., 2006). Interestingly, Mash1 was also reduced in the DA progenitor domain 

suggesting a possible contribution to this dramatic phenotype.  Furthermore, substitution 

of Ngn2 expression Mash1 knock-in at the Ngn2 locus partially rescued the phenotype 

indicating the requirement of Ngn2 for the proper development of mDA neurons (Kele et 

al., 2006). This work also suggests redundancy between Ngn2 and Mash1 functions. This 

notion is further supported by a recent study of the Delta-like 3 (Dll3) promoter, where it 

is shown that Mash1 and Ngn2 bind to the same regulatory elements of this promoter in a 

single complex. They also indicate that Mash1 and Ngn2 interaction with the specific E-

box sequence (CACATG) may require other unknown factors (Henke et al., 2009). In our 

study, we have identified Foxa2 binding events in vivo in the Nurr1 promoter 118 bp 

upstream of the TSS (Figure 4-5). It will be very interesting to investigate if the 

Mash1/Ngn2 complex is involved in regulating the Nurr1 promoter and if Foxa2 is 

required for this function. This data would give Foxa2 a direct role in promoting the 

maturation of mDA neurons by directly inducing Nurr1. In support of this model, 

analysis of the Nestin-Cre Foxa1/2 double mutants by Ferri et al. show that the cells are 
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blocked at neurogenesis, since by E12.5, Neurog2 expression can be identified albeit 

reduced and there is a clear block in Nurr1 expression. Conversely, work performed by 

Simon Stott in the lab where he analyzed the effect of a developmentally later Cre 

recombination of Foxa1;Foxa2 flox/flox mice driven by the DAT promoter has 

demonstrated that by E14.5 there are no more TH+ cells where deletion of Foxa1;Foxa2 

has occurred with the maintenance of Nurr1 expression indicating a requirement of Foxa 

protein to maintain TH expression (Zhuang et al., 2005).  It is worth mentioning that the 

Foxa2 peaks in the Nurr1 promoter has been identified only in the E12.5 data set but not 

E14.5 where neurogenesis has ended and the expression of Ngn2 and Mash1 is 

essentially absent in the DA domain. This provides an explanation for the maintenance of 

Nurr1 expression in the DAT-Cre Foxa1/2 F/F mice since Foxa2 is not required to 

maintain its expression. Further investigation is required to confirm these interpretations. 

4.3.2 Otx2 co-regulates a subset of Foxa2 target genes 

Genetic data have shown that Otx2 and Foxa2 may directly or indirectly regulate 

common targets involved in mDA neuron differentiation such as Shh, lmx1a, and Lmx1b 

(Omodei et al., 2008 2009). In this thesis ChIP-analysis has shown that Foxa2 and Otx2 

binds to the regulatory regions of the affected genes and indicates that this regulation is 

direct. Furthermore, a large-scale mammalian two-hybrid screen predicts a Foxa2/Otx2 

interaction. In our in vitro ChIP-Seq data set, we identified an enrichment of the Otx2 

DNA binding motif, which strongly suggests that Otx2 may co-regulate a subset of Foxa2 

direct targets. In this study, the ChIP-Seq data together with analysis of loss of function 

models for Foxa2 and Otx2, we identified 11 genes that require both Otx2 and Foxa2 

inputs for their proper expression. Among these genes, the most interesting ones are 
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Ltbp1 (latent transforming growth factor beta binding protein), Tgf-β receptor 3, and 

Bmp7, which are components of Tgf-β superfamily of signaling molecules (Fuchshofer et 

al., 2009; Zhou et al., 2009). Tgf-β signaling has been previously shown to play 

important roles in mDA neuron development (Farkas et al., 2003). Moreover, Foxa2 and 

Otx2 synergistically activated the enhancer activity of the Foxa2-bound genomic region 

of BMP7 in luciferase assays. These results indicate that Otx2 may co-regulate a small 

subset of the Foxa2 direct target genes, and the Tgf-β signaling pathway may depend on 

both factors for its proper regulation.  
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Loss of function studies in mice suggests that Foxa2 together with Otx2 are required 

for the proper expression of Lmx1a. Furthermore, ChIP-qPCR analysis using Otx2 

antiserum together with luciferase assays of Lmx1a CR2 indicates a direct Otx2 input in 

regulating this enhancer.  

The regulatory input of Otx2 on Lmx1b expression is different from that of Lmx1a. 

Analysis of En1-Cre Otx2 Flox mutant mice indicates an expansion of the Lmx1b domain 

to more dorsal regions, suggesting a possible inhibitory role of Otx2, which restricts 

Lmx1b to the mDA domain (Puelles et al., 2004). Luciferase assays of the Lmx1b CR1 

support the presence of an inhibitory effect of Otx2 when co-transfected with the 

luciferase construct. Moreover, ChIP-qPCR analysis with Otx2 antiserum of the Lmx1b 

CR1 suggests that this effect is direct. Mutation analysis of the Otx2 DNA binding motif 

within these constructs is required to confirm these observations. These results indicate 

the possible presence of an Otx2/Foxa2 code for the proper specification of mDA 

neurons through the induction of Lmx1a, and restricting the expression domain of 

Lmx1b, and also possibly through modulating the Tgf-βsignaling pathway. Further 

analysis is required to confirm the extent of disruption of the Tgf-beta signaling pathway 

by evaluating the activity of smad proteins, which are the pathway downstream effectors. 

 

Figure 4-1: Model of possible Foxa2/Otx2 interaction in mDA 

development. Foxa2 and Otx2 may be required to modulate Tgf-beta 

signaling by regulating it’s components Ltbp1, Tgf-βr3, and Bmp7. 

Furthermore, Foxa2 and Otx2 are required for the induction of 

Lmx1a. 
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4.3.3 Lmx1a cooperates with Foxa2 to regulate the specification and development 
of midbrain DA neurons 

We have investigated the possibility of a Foxa2 and Lmx1a combinatorial 

relationship in regulating gene expression. Intensive genetic analysis of mutant mice have 

strongly suggested this interaction for the proper specification of midbrain DA neurons 

(Lin et al., 2009; Nakatani et al., 2010). Luciferase reporter analysis demonstrates the 

possible occurrence of a Foxa2/Lmx1a combinatorial induction of novel enhancer regions 

regulating early and late developmental genes (Table 5). Genetic data indicates that 

Foxa2 does not function independently to induce midbrain DA properties, but requires 

Lmx1a as well. Moreover, Lmx1a can induce the complete midbrain DA phenotype only 

in the Foxa2+ domains (Nakatani et al., 2010). Furthermore, data from Nakatani et al. 

have suggested that Foxa2 and Lmx1a are required for the induction of Neurog2 either 

directly by regulating its promoter or indirectly by repressing Helt, a BHLH transcription 

factor which acts mainly as a repressor. Our ChIP-Seq data has identified a Foxa2 

binding event on a conserved region very close to the known Neurog2 enhancer on the 3’ 

end of the gene (Figure 4-4). Strikingly, an Lmx1a DNA binding motif was identified 

near the predicted Foxa2 binding site (Rascle et al., 2009). Further analysis is required to 

establish if this region demonstrates enhancer activity and the presence of a 

Foxa2/Lmx1a input for its regulation. If this model is confirmed it will place Foxa2 as a 

direct regulator of Neurog2 further expanding a feed forward loop driving the DA 

progenitors towards differentiation (Figure 4-6). 
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4.4 Conclusions from of Lmx1a and Lmx1b regulatory elements 

In this study we identified the genomic regions that govern the expression pattern 

of Lmx1b and in part the expression pattern of Lmx1a. Since the Lmx1b CR1 enhancer 

was the smallest (200 bp) of the three analyzed it made it easier to identify the possible 

Foxa2 binding site by DNA mutations and subsequent LacZ reporter assays. This 

analysis demonstrated a direct role for Foxa2 in the regulation of Lmx1b expression. This 

remains to be established for the Lmx1a enhancers. 

The LacZ expression pattern of Lmx1b CR1 enhancer is restricted to the floor plate 

where mDA neurons are born. Co-labeling analysis with floor plate markers should be 

performed to confirm this finding. We are very hopeful that this enhancer will serve as a 

good tool for lineage tracing analysis and mutant analysis specific to the floor plate by 

driving Cre expression to this region. 

Furthermore, the Lmx1a CR2 enhancer seems to drive LacZ expression to the rostral 

half of the Lmx1a+ mDA progenitor domain. Co-staining of β-gal and Lmx1a will be 

performed to confirm this interpretation. It would be very interesting to identify which 

mDA neuron subpopulation this enhancer labels at later developmental stages. It has been 

proposed that subpopulation can already be identified at E12.5. This is shown by Otx2 

expression patterns where Otx2+ labels only a subset of mDA neurons at this stage (Di 

Salvio et al., 2009). Lmx1a CR2 labeling one of these Otx2+/- subpopulations will allow 

us to speculate that these cells are specified to their subpopulations very early in 

development (E10.5). Identifying the factors involved in this early specification process 

would provide novel mechanistic insights for mDA development.  
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4.5 Foxa2 roles in coordinating Shh signaling pathway 

Foxa2 is known to induce Shh expression within the notochord and floor plate 

(Echelard et al., 1993; Hynes et al., 1995). Recent papers have demonstrated that Foxa2 

can also act as a repressor of Shh downstream targets such as Nkx2.2 (Lin et al., 2009). A 

recent study in the lab of the Wnt1-Cre Foxa2-flox mutant mice by Mavromatakis, 2006 

have demonstrated that Foxa2 is involved in modulating Shh signaling by inhibiting the 

expression of its intracellular transducer, Gli2. The ChIP-Seq data indicate that this effect 

may be direct, since Foxa2 is binding on five candidate regulatory elements on the Gli2 

locus and promoter. Furthermore, these genetic studies have demonstrated that Foxa2 is 

required for the expression of Foxa1, and the repression of other Shh signaling 

components, Ptch1 and Gli1. Notably, Foxa2 binding sites were identified on the Gli1 

and Ptch1 regulatory regions, which correlated very well with the Gli1 binding sites 

identified from a Gli1 ChIP-on-chip analysis by Vokes et al. This data suggests a direct 

role of Foxa2 in controlling the expression of Shh components and downstream targets 

(Figure 4-2). 
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Figure 4-2:Foxa2 coordinates Shh signaling. (1) Foxa2 gene activity induces the transcription 

of Shh within the notochord and subsequent diffusion of the morphogenetic Shh protein 

induces the expression of genes involved in specifying the floor plate region in the overlying 

neural plate (green arrows). Gli2, which is known to mediate the primary response of Shh 

signalling, induces the expression of Foxa2 within the presumptive floor plate region. (2) 

Foxa2 protein induces the transcriptional activation of Shh and Foxa1 in this region. Foxa2 

and possibly Foxa1 are involved in the down-regulation of Gli2 gene expression from the 

ventral midline. (3) Shh signaling induces target genes such as Nkx2.2 and also induces the 

transcription of mediators of the Shh signalling cascade including Ptc, the membrane bound 

Shh receptor. Through this activation of mediators, Foxa2 gene expression is induced, 

therefore creating a positive feedback loop in which both Foxa2 and Shh maintain their gene 

expression within this midline tissue. (3) Foxa2 may directly regulate the ventral limit of 

Nkx2.2, Gli1, Gli2, and Ptc.(Modified from Mavromatakis, 2006) 
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4.6 Concluding ideas  

Gene expression patterns are mainly controlled by transcription factors (Wilson et 

al., 2009). Foxa2 has been shown to play critical roles in the specification and 

development of various tissues in mouse and C elegans  (Gaudet and Mango, 2002; Li et 

al., 2009; Santisteban et al., 2010; Xu et al., 2009). This observation suggests that Foxa2 

is involved in the regulation of gene expression patterns in a highly complex manner. 

Numerous models have been generated for the possible mechanisms of Foxa2 function. 

From our data a number of possible model mechanisms of Foxa2 function have emerged 

in DA neuron development. These observations and interpretation need to be investigated 

further. 

 

4.6.1 The affinity model 

The affinity model has been previously described in C elegans where high affinity 

binding sites lead to the early expression of Foxa2 target genes and lower affinity binding 

sites lead to the delay in gene expression (Gaudet and Mango, 2002). Also, the affinity of 

the Foxa2 binding sites may play a role in the expression profile of cells of specific tissue 

depending on the expression levels of Foxa2 (Figure 4-3)(Kele et al., 2006). For example, 

in the liver it has been shown that it is more likely to find Foxa2 target genes with lower 

affinity binding sites where Foxa2 expression levels are high (Tuteja et al., 2008). From 

our study the expression of two genes TH and AADC seem to fit this model. TH and 

AADC are both required in late neuronal function for DA synthesis but their expression 

is initiated at two different time points. The early expression (E10.5) of AADC correlates 
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with the presence of a high affinity (according to sequence compatibility) Foxa2 binding 

site within its neuronal promoter. Moreover, the later expression (E11.5) of TH correlates 

with the presence of a low affinity Foxa2 binding site within its promoter region. Given 

the large number of targets genes identified in this study at different time points of 

midbrain DA neuron development it would be interesting to further validate the affinity 

model for the temporal regulation of genes by Foxa2. 

  

 

 

 

 

 

 

 

 

 

Figure 4-3: The affinity model suggests that Foxa2 regulation of transcription may 

depend on the DNA binding motif it identifies on regulatory regions, as well as on its 

concentration in the cell. Lower concentrations are required to induce genes with high 

affinity motifs compared to genes with low affinity motifs within their regulatory 

regions. (Modified from Mango, 2009) 
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4.6.2 Combinatorial control and feed-forward loops 

A key mechanism that may provide progression of development with stable 

commitment to the mDA neuronal fate is the combinatorial control of transcription by 

multiple factors interacting with Foxa2. Furthermore, Foxa2 involvement has been 

suggested in feed forward loops where Foxa2 induces a target gene and together they co-

induce target genes involved in regulating developmental progression (Ang, 2006; 

Mango, 2009). Notably, in our study we have identified Foxa2 binding events on possible 

regulatory regions of candidate target genes that are regulators of key events in midbrain 

DA development (Lmx1a, Lmx1b, Neurog2, Nr4a2, and Pitx3). We have previously 

suggest that Otx2 and Foxa2 together induce the expression of Lmx1a, and both induce 

and restrict the expression of Lmx1b, the key specification factors of DA neurons. Gain 

of function analysis of Lmx1a in chick and loss of function analysis of Foxa2 in mouse 

demonstrate the regulation of expression of the proneural gene Neurog2, which is 

required for differentiation of mDA neurons (Huangfu and Anderson, 2006; Kele et al., 

2006), The Foxa2 peak identified close to the Neurog2 locus and the possible (well 

conserved) Lmx1a DNA binding motif within this region suggests this regulation may be 

direct (Figure 4-4). As suggested previously, Foxa2 together with Neurog2 may be 

directly required to induce Nurr1 (Nr4a2) since a peak was identified within its promoter 

and an E box motif was observed. Finally Nurr1 and Foxa2 co-regulate the Pitx3 element 

identified and all three regulate the expression of TH the mature DA neuronal marker 

(Figure 4-6). This is a complex network of interaction that requires further investigation. 
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Figure 4-4: Occupancy of Neurog2 conserved genomic element by Foxa2. (A) Schematic 

diagram of genomic region occupied by Foxa2 down stream of the Neurog2 gene, from data 

obtained by Foxa2 ChIP-Seq experiments on E12.5 ventral midbrain tissue. Arrow indicate 

peak called by peak calling algorithm MACS. (B) Schematic diagram indicating the position of 

the predicted Foxa2 and Lmx1a DNA binding sites. 
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Figure 4-5: Occupancy of the Nurr1 (Nr4a2) promoter by Foxa2. (A) Schematic 

diagram of the genomic region occupied by Foxa2, from data obtained by Foxa2 

ChIP-Seq experiments on E12.5 ventral midbrain tissue. Arrow indicates peak 

called by peak calling algorithm MACS. (B) Schematic diagram of mouse 

Nurr1promotes indicates the presence of predicted Foxa2.  
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All together, our work provides extensive information regarding possible Foxa2 

functions during the development of mDA neurons through the identification of Foxa2 

direct targts. This data suggests that Foxa2 is required at multiple points in the 

development of mDA neurons: specification, and differentiation.  Further analysis is 

required to confirm these results, but nonetheless; we provide insights on the diverse 

range of functions Foxa2 may performs for the proper development of mDA neurons. 

 

 

 

 

 

Figure 4-6: Combinatorial regulation of mDA specific genes through feed forward loops. 

(1) During specification, Foxa2 induces directly Lmx1b while Otx2 regulates its dorsal 

limit. (2) Foxa2 and Otx2 possibly regulate directly the expression of Lmx1a within the 

floor plate region. (3) Foxa2 in combination with Lmx1a may induce directly Neurog2 

(Ngn2) and promote differentiation. (4) Foxa2 together with Neurog2 may regulate Nurr1 

(Nr4a2) by binding to its promoter. (5) Foxa2 and possibly in combination with Lmx1a 

and Nurr1 positively regulate Pitx3. (6) Finally, Foxa2, Nurr1 and Pitx3 are required for 

the induction of TH by regulating directly it’s promoter. (This is a hypothetical series of 

events during the specification and differentiation of mDA neurons that requires further 

analysis and validation). 
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4.7 Appendix A 

 

 

 

 

 

 

 

 

 

Figure 4-7: Coronal sections through adult mouse midbrain. In situ hybridization 

analysis of genes identified from the in vivo ChIP-Seq assays. Black area 

indicates expression within the DA area. Look at atlas next.  (Modified from the 

Allen brain atlas) 
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Figure 4-8: Coronal sections through adult mouse midbrain. Anatomy atlas of the 

adult mouse midbrain. Black region indicates DA population area (SNc, and 

VTA). (Modified from the Allen brain atlas) 



 171 

4.8 Appendix B 
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Figure 4-9: Gene symbol, names and MGI IDs of genes mentioned in the in vitro 

ChIP-Seq analysis. 
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Figure 4-10: Genomic regions identified from the in vitro data set and used in 

ChIP-qPCR validation analysis using chromatin from E12.5 dissected ventral 

midbrain.  
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4.9 Appendix C 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11: Gene symbol, names and MGI IDs of genes mentioned in the in vivo ChIP-Seq 

analysis. 
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Figure 4-12: Genomic regions used in ChIP-qPCR analisys using E12.5, and 

E14.5 chromatin from dissected ventral midbrain 
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4.10 Appendix D 
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Figure 4-13:Analysis of downstream targets of Shh signalling at E10.5 in 

the Foxa2 CKO (conditional knockout) mouse ventral mesencephalon. A-

J: Coronal sections of E10.5 wild type and Foxa2 CKO embryos. Analysis 

of the downstream targets of Shh signalling revealed that in E10.5 ventral 

mesencephalon the gene expression patterns of all the downstream 

targets of Shh signalling are shifted ventrally to meet the reduced Shh 

gene expression at the ventral midline. This suggests a possible role for 

Foxa2 in maintaining the expression boundary of these genes. 

Furthermore, Shh and Foxa1, known downstream targets of Foxa2, are 

reduced in these mutants. Scale bar represents 100µm. (Mavromatakis, 

2008) 
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