55 research outputs found

    Enriched childhood experiences moderate age-related motor and cognitive decline

    Get PDF
    Sherpa Romeo green journal: open accessAging is associated with deterioration of skilled manual movement. Specifically, aging corresponds with increased reaction time, greater movement duration, segmentation of movement, increased movement variability, and reduced ability to adapt to external forces and inhibit previously learned sequences. Moreover,it is thought that decreased lateralization of neural function in older adults may point to increase neural recruitment as a compensatory response to deterioration of key frontal and intra-hemispheric networks, particularly of callosal structures. However, factors that mediate age-related motor decline are not well understood. Here we show that music training in childhood is associated with reduced age-related decline of bimanual and unimanual motor skills in a MIDI keyboard motor learning task. Compared to older adults without music training, older adults with more than a year of music training demonstrated proficient bimanual and unimanual movement, evidenced by enhanced speed and decreased movement errors. Further, this group demonstrated significantly better implicit learning in the weather prediction task, a non-motor task. The performance of older adults with music training in those tasks was comparable to young adults. Older adults, however, displayed greater verbal ability compared to young adults irrespective of a past history of music training. Our results indicate that music training early in life may reduce age-associated decline of neural motor and cognitive networks.Ye

    Crop Updates 2008 - Cereals

    Get PDF
    This session covers twenty four papers from different authors: WHEAT AGRONOMY 1. Wheat variety performance in the Northern Agricultural Region in 2007, Christine Zaicou, Department of Agriculture and Food 2. Wheat variety performance on the Central Agricultural Region in 2007, Shahajahan Miyan, Department of Agriculture and Food 3. Response of wheat varieties to sowing time in the Great Southern and Lakes Region in 2007, Brenda Shackley and Steve Penny, Department of Agriculture and Food 4. Wheat variety performance in the South Coastal Region in 2007, Sarah Ellis, Department of Agriculture and Food 5. Flowering dates of wheat varieties in Western Australia in 2007, Darshan Sharma, Brenda Shackley and Christine Zaicou, Department of Agriculture and Food BARLEY AGRONOMY 6. Barley variety options for Western Australia, Blakely Paynter, Andrea Hills and Jeff Russell, Department of Agriculture and Food 7. Vlaming A – the newest malting barley variety, Blakely Paynter, Jeff Russell and Andrea Hills, Department of Agriculture and Food 8. Barley yields higher in wide rows with stubble retained in a very dry season at Merredin, Glen Riethmuller, Bill Bowden and Paul Blackwell, Department of Agriculture and Food HERBICIDE TOLERANCE 9. Herbicide tolerance of current/new wheat varieties, Dr Harmohinder Dhammu, Department of Agriculture and Food 10. Herbicide tolerance of new oat varieties, Dr Harmohinder Dhammu, Vince Lambert, and Chris Roberts,Department of Agriculture and Food NUTRITION 11. Managing nitrogen inputs in malting barley, Andrea Hills and Blakely Paynter, Department of Agriculture and Food 12. Decision tools for optimal N on cereal crops, David and Sally Cox, Jeremy Lemon* and Andrea Hills*, *Department of Agriculture and Food 13. Wheat varieties respond differently to potassium application on potassium responsive soils, Paul Damon and Zed Rengel, Faculty of Natural and Agricultural Sciences, University of Western Australia DISEASES 14. Leaf disease management in continuous barley in the northern and central grainbelt of WA, Geoff Thomas, Ciara Beard, Anne Smith, Kith Jayasena and Sean Kelly, Department of Agriculture and Food 15. Temperature and moisture requirements of leaf, stem and stripe rusts of wheat, Geoff Thomas, Rob Loughman and Bill MacLeod, Department of Agriculture and Food 16. Fungicide options for controlling diseases in oats, Raj Malik and Blakely Paynter, Department of Agriculture and Food 17. Survey of wheat root diseases under intensive cereal production in Western Australia during 2005-2007, Ravjit Khangura, William MacLeod, Vivien Vanstone, Colin Hanbury, Mehreteab Aberra, Gordon MacNish and Robert Loughman, Department of Agriculture and Food 18. Epidemiology studies on Wheat Streak Mosaic Virus in 2007, Brenda Coutts, Geoff Strickland, Monica Kehoe, Dustin Severtson and Roger Jones, Department of Agriculture and Food 19. Bacterial diseases that affect WA export hay quality, Dominie Wright and Megan Jordan, Department of Agriculture and Food SOIL 20. Hardpan penetration ability of drought-stressed wheat under pot and field conditions, Xinhua He1, Eli Manyol1, Song-Ai Nio1, Imran Malik1, Tina Botwright-Acuña1,2and Len Wade1,3,1School of Plant Biology, University of Western Australia, 2Tasmanian Institute of Agricultural Research, University of Tasmania, TAS, 3E.H. Graham Centre, Charles Sturt University, NSW HARVEST MANAGEMENT 21. Calculating the risk – the SEPWA Harvest Calculator, Nigel Metz, South East Premium Wheat Growers Association 22. The relationship between grain moisture and atmospheric conditions in cereal crop harvesting on the South Coast of WA, Nigel Metz, South East Premium Wheat Growers Association (SEPWA) MARKETS 23. Varietal accreditation for Australian Barley, Linda Price, Barley Australia STATISTICAL METHODS 24. Applying data mining tools to improve grain quality for growers, Dean Diepeveen1, Leisa Armstrong2, Peter Clarke1, Doug Abrecht1, Rudi Appels2 and Matthew Bellgard3,1Department of Agriculture and Food, Western Australia 2Edith Cowan University, Western Australia, 3Centre of Comparative Genomics, Murdoch Universit

    Researching COVID to Enhance Recovery (RECOVER) Pregnancy Study: Rationale, Objectives and Design

    Get PDF
    IMPORTANCE: Pregnancy induces unique physiologic changes to the immune response and hormonal changes leading to plausible differences in the risk of developing post-acute sequelae of SARS-CoV-2 (PASC), or Long COVID. Exposure to SARS-CoV-2 during pregnancy may also have long-term ramifications for exposed offspring, and it is critical to evaluate the health outcomes of exposed children. The National Institutes of Health (NIH) Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC aims to evaluate the long-term sequelae of SARS-CoV-2 infection in various populations. RECOVER-Pregnancy was designed specifically to address long-term outcomes in maternal-child dyads. METHODS: RECOVER-Pregnancy cohort is a combined prospective and retrospective cohort that proposes to enroll 2,300 individuals with a pregnancy during the COVID-19 pandemic and their offspring exposed and unexposed in utero, including single and multiple gestations. Enrollment will occur both in person at 27 sites through the Eunice Kennedy Shriver National Institutes of Health Maternal-Fetal Medicine Units Network and remotely through national recruitment by the study team at the University of California San Francisco (UCSF). Adults with and without SARS-CoV-2 infection during pregnancy are eligible for enrollment in the pregnancy cohort and will follow the protocol for RECOVER-Adult including validated screening tools, laboratory analyses and symptom questionnaires followed by more in-depth phenotyping of PASC on a subset of the overall cohort. Offspring exposed and unexposed in utero to SARS-CoV-2 maternal infection will undergo screening tests for neurodevelopment and other health outcomes at 12, 18, 24, 36 and 48 months of age. Blood specimens will be collected at 24 months of age for SARS-CoV-2 antibody testing, storage and anticipated later analyses proposed by RECOVER and other investigators. DISCUSSION: RECOVER-Pregnancy will address whether having SARS-CoV-2 during pregnancy modifies the risk factors, prevalence, and phenotype of PASC. The pregnancy cohort will also establish whether there are increased risks of adverse long-term outcomes among children exposed in utero. CLINICAL TRIALS.GOV IDENTIFIER: Clinical Trial Registration: http://www.clinicaltrials.gov. Unique identifier: NCT05172011

    Community Engagement newsletter, Faculty of Veterinary Science, Winter, 2012

    Get PDF
    Mangaung community receives support from Onderstepoort / Willem Engelbrecht, Helzna Krikke, Ingrid Metz, Janine Lombard, Marelize Greyling and Willem Janson -- Fighting animal abuse one school at a time / Ruche Harmse, Taryn Light, Ansu Visser, Este van Coetzen, Megan Naude, Nadia Strydom and Tess Tjasink -- Veterinary education and “Vets for the kids” / Patrick Ntsibande, Nyeleti Manganyi, Noluthando Ndashe, Thapelo Makae, Khulekani Lukhele and Sabelo Magagula -- soVETo k9 Mobile clinic outreach / Daleen Bester, Gideon Stemmet, Ian Gibson, Kobus Rabe, Louw Grobler and Rhynard de RidderNews articles with colour photos about the various community engagement projects of the Faculty of Veterinary Science, University of Pretoria.ab201

    Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection

    Get PDF
    IMPORTANCE: SARS-CoV-2 infection is associated with persistent, relapsing, or new symptoms or other health effects occurring after acute infection, termed postacute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Characterizing PASC requires analysis of prospectively and uniformly collected data from diverse uninfected and infected individuals. OBJECTIVE: To develop a definition of PASC using self-reported symptoms and describe PASC frequencies across cohorts, vaccination status, and number of infections. DESIGN, SETTING, AND PARTICIPANTS: Prospective observational cohort study of adults with and without SARS-CoV-2 infection at 85 enrolling sites (hospitals, health centers, community organizations) located in 33 states plus Washington, DC, and Puerto Rico. Participants who were enrolled in the RECOVER adult cohort before April 10, 2023, completed a symptom survey 6 months or more after acute symptom onset or test date. Selection included population-based, volunteer, and convenience sampling. EXPOSURE: SARS-CoV-2 infection. MAIN OUTCOMES AND MEASURES: PASC and 44 participant-reported symptoms (with severity thresholds). RESULTS: A total of 9764 participants (89% SARS-CoV-2 infected; 71% female; 16% Hispanic/Latino; 15% non-Hispanic Black; median age, 47 years [IQR, 35-60]) met selection criteria. Adjusted odds ratios were 1.5 or greater (infected vs uninfected participants) for 37 symptoms. Symptoms contributing to PASC score included postexertional malaise, fatigue, brain fog, dizziness, gastrointestinal symptoms, palpitations, changes in sexual desire or capacity, loss of or change in smell or taste, thirst, chronic cough, chest pain, and abnormal movements. Among 2231 participants first infected on or after December 1, 2021, and enrolled within 30 days of infection, 224 (10% [95% CI, 8.8%-11%]) were PASC positive at 6 months. CONCLUSIONS AND RELEVANCE: A definition of PASC was developed based on symptoms in a prospective cohort study. As a first step to providing a framework for other investigations, iterative refinement that further incorporates other clinical features is needed to support actionable definitions of PASC

    Researching COVID to Enhance Recovery (RECOVER) Adult Study Protocol: Rationale, Objectives, and Design

    Get PDF
    IMPORTANCE: SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or other health effects after the acute phase of infection; termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are ill-defined. The objectives of the Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC in Adults (RECOVER-Adult) are to: (1) characterize PASC prevalence; (2) characterize the symptoms, organ dysfunction, natural history, and distinct phenotypes of PASC; (3) identify demographic, social and clinical risk factors for PASC onset and recovery; and (4) define the biological mechanisms underlying PASC pathogenesis. METHODS: RECOVER-Adult is a combined prospective/retrospective cohort currently planned to enroll 14,880 adults aged ≥18 years. Eligible participants either must meet WHO criteria for suspected, probable, or confirmed infection; or must have evidence of no prior infection. Recruitment occurs at 86 sites in 33 U.S. states, Washington, DC and Puerto Rico, via facility- and community-based outreach. Participants complete quarterly questionnaires about symptoms, social determinants, vaccination status, and interim SARS-CoV-2 infections. In addition, participants contribute biospecimens and undergo physical and laboratory examinations at approximately 0, 90 and 180 days from infection or negative test date, and yearly thereafter. Some participants undergo additional testing based on specific criteria or random sampling. Patient representatives provide input on all study processes. The primary study outcome is onset of PASC, measured by signs and symptoms. A paradigm for identifying PASC cases will be defined and updated using supervised and unsupervised learning approaches with cross-validation. Logistic regression and proportional hazards regression will be conducted to investigate associations between risk factors, onset, and resolution of PASC symptoms. DISCUSSION: RECOVER-Adult is the first national, prospective, longitudinal cohort of PASC among US adults. Results of this study are intended to inform public health, spur clinical trials, and expand treatment options

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges
    corecore