176 research outputs found

    Thiol-Disulfide Interchange in the Tocinoic Acid/Glutathione System During Freezing and Drying

    Get PDF
    Thiol-disulfide interchange (“disulfide scrambling”) is a common mechanism of covalent aggregation for protein drugs. Using tocinoic acid (cyclo-S-Cys-Tyr-Ile-Gln-Asn-Cys-(S); TA(ox)) and glutathione (γGlu-Cys-Gly; GSH), our previous work demonstrated that thiol/disulfide interchange is affected by lyophilization in a manner consistent with irreversible and regioselective loss of TA(ox) (Zhang et al., 2009, J Pharm Sci 98/9: 3312–3318). Here, we explore the contributions of stages of the lyophilization cycle to perturbations in thiol/disulfide interchange in the TA/GSH system. TA(ox) and GSH were co-lyophilized from phosphate buffer in the presence or absence of various excipients, then analyzed for TA(ox) and mixed disulfide products by reverse phase high performance liquid chromatography (rp-HPLC). Perturbations were found to occur primarily during freezing, before significant amounts of ice were removed by sublimation. Addition of a lyoprotectant (sucrose), a cryoprotectant (Tween-20) and flash-freezing influenced the product distribution only while ice was still present. Decreasing the redox potential by the addition of oxidized glutathione (GSSG) affected the product distribution differently in lyophilized samples and solution controls, but in neither case led to increased conservation of TA(ox)

    Immuno-fluorescent Labeling of Microtubules and Centrosomal Proteins in Ex Vivo Intestinal Tissue and 3D In Vitro Intestinal Organoids.

    Get PDF
    The advent of 3D in vitro organoids that mimic the in vivo tissue architecture and morphogenesis has greatly advanced the ability to study key biological questions in cell and developmental biology. In addition, organoids together with recent technical advances in gene editing and viral gene delivery promises to advance medical research and development of new drugs for treatment of diseases. Organoids grown in vitro in basement matrix provide powerful model systems for studying the behavior and function of various proteins and are well suited for live-imaging of fluorescent-tagged proteins. However, establishing the expression and localization of the endogenous proteins in ex vivo tissue and in in vitro organoids is important to verify the behavior of the tagged proteins. To this end we have developed and modified tissue isolation, fixation, and immuno-labeling protocols for localization of microtubules, centrosomal, and associated proteins in ex vivo intestinal tissue and in in vitro intestinal organoids. The aim was for the fixative to preserve the 3D architecture of the organoids/tissue while also preserving antibody antigenicity and enabling good penetration and clearance of fixative and antibodies. Exposure to cold depolymerizes all but stable microtubules and this was a key factor when modifying the various protocols. We found that increasing the ethylenediaminetetraacetic acid (EDTA) concentration from 3 mM to 30 mM gave efficient detachment of villi and crypts in the small intestine while 3 mM EDTA was sufficient for colonic crypts. The developed formaldehyde/methanol fixation protocol gave very good structural preservation while also preserving antigenicity for effective labeling of microtubules, actin, and the end-binding (EB) proteins. It also worked for the centrosomal protein ninein although the methanol protocol worked more consistently. We further established that fixation and immuno-labeling of microtubules and associated proteins could be achieved with organoids isolated from or remaining within the basement matrix

    Inflammatory responses to induced infectious endometritis in mares resistant or susceptible to persistent endometritis

    Get PDF
    BACKGROUND: The objective of the study was to evaluate the gene expression of inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-8, IL-10, tumor necrosis factor [TNF]-α, IL-1 receptor antagonist [ra] and serum amyloid A (SAA) in endometrial tissue and circulating leukocytes in response to uterine inoculation of 105 colony forming units (CFU) Escherichia coli in mares. Before inoculation, mares were classified as resistant or susceptible to persistent endometritis based on their uterine inflammatory response to infusion of 109 killed spermatozoa and histological assessment of the endometrial quality. Endometrial biopsies were obtained 3, 12, 24 and 72 hours (h) after bacterial inoculation and blood samples were obtained during the 7 day period post bacterial inoculation. Expression levels of cytokines and SAA were determined by quantitative real-time reverse transcriptase PCR (qRT-PCR). RESULTS: Compared to levels in a control biopsy (obtained in the subsequent estrous), resistant mares showed an up-regulation of IL-1β, IL-6, IL-8 and TNF-α at 3 h after E. coli inoculation, while susceptible mares showed increased gene expression of IL-6 and IL-1ra. Susceptible mares had a significant lower gene expression of TNF-α,IL-6 and increased expression of IL-1ra 3 h after E. coli inoculation compared to resistant mares. Susceptible mares showed a sustained and prolonged inflammatory response with increased gene expression levels of IL-1β, IL-8, IL-1ra and IL-1β:IL-1ra ratio throughout the entire study period (72 h), whereas levels in resistant mares returned to estrous control levels by 12 hours. Endometrial mRNA transcripts of IL-1β and IL-1ra were significantly higher in mares with heavy uterine bacterial growth compared to mares with no/mild growth.All blood parameters were unaffected by intrauterine E. coli infusion, except for a lower gene expression of IL-10 at 168 h and an increased expression of IL-1ra at 48 h observed in susceptible mares compared to resistant mares. CONCLUSIONS: The current investigation suggests that endometrial mRNA transcripts of pro-inflammatory cytokines in response to endometritis are finely regulated in resistant mares, with initial high expression levels followed by normalization within a short period of time. Susceptible mares had a prolonged expression of pro-inflammatory cytokines, supporting the hypothesis that an unbalanced endometrial gene expression of inflammatory cytokines might play an important role in the pathogenesis of persistent endometritis

    Best Practices for Building Interprofessional Telehealth: Report of a Conference

    Get PDF
    The Arizona Biomedical Research Centre (ABRC) has funded a series of workshops and conferences since 2016 to build the capacity of local, tribal, and state agencies, healthcare delivery organizations, and non-governmental organizations to engage in meaningful research related to health disparities. With the COVID-19 pandemic, the use of telehealth has dramatically increased, particularly in nursing, occupational therapy (OT), physical therapy (PT), and speech-language pathology (SLP). The purpose of this paper is to summarize the presentations and discussion from the conference titled “Telerehabilitation and Telepractice: An Interprofessional Conference to Build Connections and Best Practices,” held remotely on March 4-5, 2021. Terminology and concepts from the conference were debated, modified, and refined, based on an interprofessional audience. Presenters at the conference, all leaders in their field, discussed the current status of telehealth in their professions, including best practices, challenges, future trends, and research needs

    Mixed Candida albicans strain populations in colonized and infected mucosal tissues

    Get PDF
    Multilocus sequence typing of six Candida albicans colonies from primary isolation plates revealed instances of colony-to-colony microvariation and carriage of two strain types in single oropharyngeal and vaginal samples. Higher rates of colony variation in commensal samples suggest selection of types from mixed populations either in the shift to pathogenicity or the response to antifungal treatment

    Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres.

    Get PDF
    Differentiation of columnar epithelial cells involves a dramatic reorganization of the microtubules (MTs) and centrosomal components into an apico-basal array no longer anchored at the centrosome. Instead, the minus-ends of the MTs become anchored at apical non-centrosomal microtubule organizing centres (n-MTOCs). Formation of n-MTOCs is critical as they determine the spatial organization of MTs, which in turn influences cell shape and function. However, how they are formed is poorly understood. We have previously shown that the centrosomal anchoring protein ninein is released from the centrosome, moves in a microtubule-dependent manner and accumulates at n-MTOCs during epithelial differentiation. Here, we report using depletion and knockout (KO) approaches that ninein expression is essential for apico-basal array formation and epithelial elongation and that CLIP-170 is required for its redeployment to n-MTOCs. Functional inhibition also revealed that IQGAP1 and active Rac1 coordinate with CLIP-170 to facilitate microtubule plus-end cortical targeting and ninein redeployment. Intestinal tissue and in vitro organoids from the Clip1/Clip2 double KO mouse with deletions in the genes encoding CLIP-170 and CLIP-115, respectively, confirmed requirement of CLIP-170 for ninein recruitment to n-MTOCs, with possible compensation by other anchoring factors such as p150Glued and CAMSAP2 ensuring apico-basal microtubule formation despite loss of ninein at n-MTOCs

    What Can We Learn from a Metagenomic Analysis of a Georgian Bacteriophage Cocktail?

    Get PDF
    Phage therapy, a practice widespread in Eastern Europe, has untapped potential in the combat against antibiotic-resistant bacterial infections. However, technology transfer to Western medicine is proving challenging. Bioinformatics analysis could help to facilitate this endeavor. In the present study, the Intesti phage cocktail, a key commercial product of the Eliava Institute, Georgia, has been tested on a selection of bacterial strains, sequenced as a metagenomic sample, de novo assembled and analyzed by bioinformatics methods. Furthermore, eight bacterial host strains were infected with the cocktail and the resulting lysates sequenced and compared to the unamplified cocktail. The analysis identified 23 major phage clusters in different abundances in the cocktail, among those clusters related to the ICTV genera T4likevirus, T5likevirus, T7likevirus, Chilikevirus and Twortlikevirus, as well as a cluster that was quite distant to the database sequences and a novel Proteus phage cluster. Examination of the depth of coverage showed the clusters to have different abundances within the cocktail. The cocktail was found to be composed primarily of Myoviridae (35%) and Siphoviridae (32%), with Podoviridae being a minority (15%). No undesirable genes were found

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Get PDF
    Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change
    corecore