124 research outputs found

    Universal few-body physics in a harmonic trap

    Get PDF
    Few-body systems with resonant short-range interactions display universal properties that do not depend on the details of their structure or their interactions at short distances. In the three-body system, these properties include the existence of a geometric spectrum of three-body Efimov states and a discrete scaling symmetry. Similar universal properties appear in 4-body and possibly higher-body systems as well. We set up an effective theory for few-body systems in a harmonic trap and study the modification of universal physics for 3- and 4-particle systems in external confinement. In particular, we focus on systems where the Efimov effect can occur and investigate the dependence of the 4-body spectrum on the experimental tuning parameters.Comment: 20 pages, 10 figures, final version, new references adde

    Helicity amplitudes and electromagnetic decays of strange baryon resonances

    Full text link
    We present results for the helicity amplitudes of the lowest-lying hyperon resonances Y*, computed within the framework of the Bonn constituent-quark model, which is based on the Bethe-Salpeter approach. The seven parameters entering the model are fitted against the best known baryon masses. Accordingly, the results for the helicity amplitudes are genuine predictions. Some hyperon resonances are seen to couple more strongly to a virtual photon with finite Q^2 than to a real photon. Other Y*'s, such as the S_{01}(1670) Lambda resonance or the S_{11}(1620) Sigma resonance, have large electromagnetic decay widths and couple very strongly to real photons. The negatively-charged and neutral members of a Sigma* triplet may couple only moderately to the Sigma(1193), while the positively-charged member of the same Sigma* triplet displays a relatively large coupling to the Sigma^+(1193) state. This illustrates the necessity of investigating all isospin channels in order to obtain a complete picture of the hyperon spectrum.Comment: 4 pages, 1 figure, 1 table, Proceedings of the Conference "International Workshop on the Physics of Excited Baryons NSTAR 05", Tallahassee, Florida (USA), Oct. 2005, contributed tal

    Relativistic quark models of baryons with instantaneous forces

    Get PDF
    This is the first of a series of three papers treating light baryon resonances (up to 3 GeV) within a relativistically covariant quark model based on the three-fermion Bethe-Salpeter equation with instantaneous two- and three-body forces. In this paper we give a unified description of the theoretical background and demonstrate how to solve the Bethe-Salpeter equation by a reduction to the Salpeter equation. The specific new features of our covariant Salpeter model with respect to the usual nonrelativistic quark model are discussed in detail. The purely theoretical results obtained in this paper will be applied numerically to explicit quark models for light baryons in two subsequent papers

    Static observables of relativistic three-fermion systems with instantaneous interactions

    Full text link
    We show that static properties like the charge radius and the magnetic moment of relativistic three-fermion bound states with instantaneous interactions can be formulated as expectation values with respect to intrinsically defined wavefunctions. The resulting operators can be given a natural physical interpretation in accordance with relativistic covariance. We also indicate how the formalism may be generalized to arbitrary moments. The method is applied to the computation of static baryon properties with numerical results for the nucleon charge radii and the baryon octet magnetic moments. In addition we make predictions for the magnetic moments of some selected nucleon resonances and discuss the decomposition of the nucleon magnetic moments in contributions of spin and angular momentum, as well as the evolution of these contributions with decreasing quark mass.Comment: 13 pages, including 2 figures and 3 tables, submitted to Eur.Phys.J.

    The NN phase shifts in the extended quark-delocalization, color-screening model

    Get PDF
    An alternative method is applied to the study of nucleon-nucleon(NN) scattering phase shifts in the framework of extended quark delocalization, color-screening model(QDCSM), where the one-pion-exchange(OPE) with short-range cutoff is included.Comment: 5 pages, 3 figures, two-colum

    Bound q2qˉ2q^2\bar q^2 states in a constituent quark model

    Full text link
    We consider the existence of bound systems consisting of two quarks and two antiquarks (q2qˉ2q^2\bar q^2) within the framework of a constituent quark model. The underlying quark dynamics is described by a linear confinement potential and an effective q2qˉ2q^2\bar q^2 interaction which has its origin in instanton effects of QCD. We calculate the spectra and examine the internal structure of the states found.Comment: 11 pages, needs epsf.st
    • 

    corecore