193 research outputs found

    Magnetic Properties of a Pressure-induced Superconductor UGe2_2

    Full text link
    We performed the DC-magnetization and neutron scattering experiments under pressure {\it P} for a pressure-induced superconductor UGe2_2. We found that the magnetic moment is enhanced at a characteristic temperature {\it T}∗^{*} in the ferromagnetic state, where {\it T}∗^{*} is smaller than a Curie temperature {\it T}C_{\rm C}. This enhancement becomes remarkable in the vicinity of {\it P}C∗_{\rm C}^{*} = 1.20 GPa, where {\it T}∗^{*} becomes 0 K and the superconducting transition temperature {\it T}SC_{\rm SC} shows a maximum. The characteristic temperature {\it T}∗^{*}, which decreases with increasing pressure, also depends on the magnetic field.Comment: To be published in J.Phys.Soc.Jp

    Magnetic structure, phase diagram, and a new type of spin-flop transition dominated by higher order interaction in a localized 5f system U3Pd20Si6

    Get PDF
    The magnetic structure of the localized-5f uranium intermetallic compound U3Pd20Si6 has been determined by means of a neutron diffraction experiment. Our data demonstrate that this compound has a collinear coupling of the sublattice ordering of the uranium spins on the 4a and 8c sites. We conclude that higher-order exchange and/or quadrupole interactions are necessary to stabilize this unique collinear structure. We discovered a new type of spin-flop transition against the uniaxial anisotropy induced by this collinear coupling

    Longitudinal SDW order in a quasi-1D Ising-like quantum antiferromagnet

    Full text link
    From neutron diffraction measurements on a quasi-1D Ising-like Co2+^{\rm 2+} spin compound BaCo2_{\rm 2}V2_{\rm 2}O8_{\rm 8}, we observed an appearance of a novel type of incommensurate ordering in magnetic fields. This ordering is essentially different from the N{\' e}el-type ordering, which is expected for the classical system, and is caused by quantum fluctuation inherent in the quantum spin chain. A Tomonaga-Luttinger liquid (TLL) nature characteristic of the gapless quantum 1D system is responsible for the realization of the incommensurate ordering.Comment: 4pages, 4figur

    Instability of Magnons in Two-dimensional Antiferromagnet at High Magnetic Fields

    Full text link
    Spin dynamics of the square lattice Heisenberg antiferromagnet, \BaMnGeO, is studied by a combination of bulk measurements, neutron diffraction, and inelastic neutron scattering techniques. Easy plane type antiferromagnetic order is identified at T≤4.0T \le 4.0 K. The exchange interactions are estimated as J1J_1 = 27.8(3)μ{\mu}eV and J2J_2 = 1.0(1) μ{\mu}eV, and the saturation field HCH_{\rm C} is 9.75 T. Magnetic excitation measurements with high experimental resolution setup by triple axis neutron spectrometer reveals the instability of one magnon excitation in the field range of 0.7HC≲H≲0.85HC0.7H_{\rm C} \lesssim H \lesssim 0.85H_{\rm C}.Comment: 5 pgase, 5 figuers, to be published in PRB R

    The dual nature of 5f electrons and origin of heavy fermions in U compounds

    Full text link
    We develop a theory for the electronic excitations in UPt3_3 which is based on the localization of two of the 5f5f electrons. The remaining ff electron is delocalized and acquires a large effective mass by inducing intra-atomic excitations of the localized ones. The measured deHaas-vanAlphen frequencies of the heavy quasiparticles are explained as well as their anisotropic heavy mass. A model calculation for a small cluster reveals why only the largest of the different 5f5f hopping matrix elements is operative causing the electrons in other orbitals to localize.Comment: 6 pages, 3 figure

    Thermodynamic Studies on Non Centrosymmetric Superconductors by AC Calorimetry under High Pressures

    Full text link
    We investigated the non centrosymmetric superconductors CePt3_3Si and UIr by the ac heat capacity measurement under pressures. We determined the pressure phase diagrams of these compounds. In CePt3_3Si, the N\'{e}el temperature TNT_{\rm N} = 2.2 K decreases with increasing pressure and becomes zero at the critical pressure PAFP_{\rm AF} ≃\simeq 0.6 GPa. On the other hand, the superconducting phase exists in a wider pressure region from ambient pressure to PAFP_{\rm AF} ≃\simeq 1.5 GPa. The phase diagram of CePt3_3Si is very unique and has never been reported before for other heavy fermion superconductors. In UIr, the heat capacity shows an anomaly at the Curie temperature TC1T_{\rm C1} = 46 K at ambient pressure, and the heat capacity anomaly shifts to lower temperatures with increasing pressure. The present pressure dependence of TC1T_{\rm C1} was consistent with the previous studies by the resistivity and magnetization measurements. Previous ac magnetic susceptibility and resistivity measurements suggested the existence of three ferromagnetic phases, FM1-3. CacC_{\rm ac} shows a bending structure at 1.98, 2.21, and 2.40 GPa .The temperatures where these anomalies are observed are close to the phase boundary of the FM3 phase.Comment: This paper was presented at the international workshop ``Novel Pressure-induced Phenomena in Condensed Matter Systems(NP2CMS)" August 26-29 2006, Fukuoka Japa
    • …
    corecore