301 research outputs found
NonClassicality Criteria in Multiport Interferometry
Interference lies at the heart of the behavior of classical and quantum
light. It is thus crucial to understand the boundaries between which
interference patterns can be explained by a classical electromagnetic
description of light and which, on the other hand, can only be understood with
a proper quantum mechanical approach. While the case of two-mode interference
has received a lot of attention, the multimode case has not yet been fully
explored. Here we study a general scenario of intensity interferometry: we
derive a bound on the average correlations between pairs of output intensities
for the classical wavelike model of light, and we show how it can be violated
in a quantum framework. As a consequence, this violation acts as a
nonclassicality witness, able to detect the presence of sources with
sub-Poissonian photon-number statistics. We also develop a criterion that can
certify the impossibility of dividing a given interferometer into two
independent subblocks.Comment: 5 + 3 pages, published versio
Anisotropic sub-Doppler laser cooling in dysprosium magneto-optical traps
Magneto-optical traps (MOTs) of Er and Dy have recently been shown to exhibit
population-wide sub-Doppler cooling due to their near degeneracy of excited and
ground state Lande g factors. We discuss here an additional, unusual intra-MOT
sub-Doppler cooling mechanism that appears when the total Dy MOT cooling laser
intensity and magnetic quadrupole gradient increase beyond critical values.
Specifically, anisotropically sub-Doppler-cooled cores appear, and their
orientation with respect to the quadrupole axis flips at a critical ratio of
the MOT laser intensity along the quadrupole axis versus that in the plane of
symmetry. This phenomenon can be traced to a loss of the velocity-selective
resonance at zero velocity in the cooling force along directions in which the
atomic polarization is oriented by the quadrupole field. We present data
characterizing this anisotropic laser cooling phenomenon and discuss a
qualitative model for its origin based on the extraordinarily large Dy magnetic
moment and Dy's near degenerate g factors.Comment: 4 pages, 5 figure
An Optimal Design for Universal Multiport Interferometers
Universal multiport interferometers, which can be programmed to implement any
linear transformation between multiple channels, are emerging as a powerful
tool for both classical and quantum photonics. These interferometers are
typically composed of a regular mesh of beam splitters and phase shifters,
allowing for straightforward fabrication using integrated photonic
architectures and ready scalability. The current, standard design for universal
multiport interferometers is based on work by Reck et al (Phys. Rev. Lett. 73,
58, 1994). We demonstrate a new design for universal multiport interferometers
based on an alternative arrangement of beam splitters and phase shifters, which
outperforms that by Reck et al. Our design occupies half the physical footprint
of the Reck design and is significantly more robust to optical losses.Comment: 8 pages, 4 figure
Loss of molecules in magneto-electrostatic traps due to nonadiabatic transitions
We analyze the dynamics of a paramagnetic, dipolar molecule in a generic
"magneto-electrostatic'' trap where both magnetic and electric fields may be
present. The potential energy that governs the dynamics of the molecules is
found using a reduced molecular model that incorporates the main features of
the system. We discuss the shape of the trapping potentials for different field
geometries, as well as the possibility of nonadiabatic transitions to untrapped
states, i.e., the analog of Majorana transitions in a quadrupole magnetic
atomic trap. Maximizing the lifetime of molecules in a trap is of great concern
in current experiments, and we assess the effect of nonadiabatic transitions on
obtainable trap lifetimes.Comment: 13 pages, 6 figure
Spectroscopy of a narrow-line laser cooling transition in atomic dysprosium
The laser cooling and trapping of ultracold neutral dysprosium has been
recently demonstrated using the broad, open 421-nm cycling transition.
Narrow-line magneto-optical trapping of Dy on longer wavelength transitions
would enable the preparation of ultracold Dy samples suitable for loading
optical dipole traps and subsequent evaporative cooling. We have identified the
closed 741-nm cycling transition as a candidate for the narrow-line cooling of
Dy. We present experimental data on the isotope shifts, the hyperfine constants
A and B, and the decay rate of the 741-nm transition. In addition, we report a
measurement of the 421-nm transition's linewidth, which agrees with previous
measurements. We summarize the laser cooling characteristics of these
transitions as well as other narrow cycling transitions that may prove useful
for cooling Dy.Comment: 6+ pages, 5 figures, 5 table
Prospects for the cavity-assisted laser cooling of molecules
Cooling of molecules via free-space dissipative scattering of photons is
thought not to be practicable due to the inherently large number of Raman loss
channels available to molecules and the prohibitive expense of building
multiple repumping laser systems. The use of an optical cavity to enhance
coherent Rayleigh scattering into a decaying cavity mode has been suggested as
a potential method to mitigate Raman loss, thereby enabling the laser cooling
of molecules to ultracold temperatures. We discuss the possibility of
cavity-assisted laser cooling particles without closed transitions, identify
conditions necessary to achieve efficient cooling, and suggest solutions given
experimental constraints. Specifically, it is shown that cooperativities much
greater than unity are required for cooling without loss, and that this could
be achieved via the superradiant scattering associated with intracavity
self-localization of the molecules. Particular emphasis is given to the polar
hydroxyl radical (OH), cold samples of which are readily obtained from Stark
deceleration.Comment: 18 pages, 10 figure
Tomography of photon-number resolving continuous-output detectors
We report a comprehensive approach to analysing continuous-output photon
detectors. We employ principal component analysis to maximise the information
extracted, followed by a novel noise-tolerant parameterised approach to the
tomography of PNRDs. We further propose a measure for rigorously quantifying a
detector's photon-number-resolving capability. Our approach applies to all
detectors with continuous-output signals. We illustrate our methods by applying
them to experimental data obtained from a transition-edge sensor (TES)
detector.Comment: 5 pages, 3 figures, also includes supplementary informatio
Magneto-Optical Trap for Polar Molecules
We propose a method for laser cooling and trapping a substantial class of
polar molecules, and in particular titanium (II) oxide (TiO). This method uses
pulsed electric fields to nonadiabatically remix the ground-state magnetic
sublevels of the molecule, allowing us to build a magneto-optical trap (MOT)
based on a quasi-cycling transition. Monte-Carlo simulations of this
electrostatically remixed MOT (ER-MOT) demonstrate the feasibility of cooling
TiO to a temperature of 10 and trapping it with a
radiation-pumping-limited lifetime on the order of 80 ms.Comment: 4 pages, 4 figures, 1 table v2: updated to final published text and
figure
Quantum teleportation on a photonic chip
Quantum teleportation is a fundamental concept in quantum physics which now
finds important applications at the heart of quantum technology including
quantum relays, quantum repeaters and linear optics quantum computing (LOQC).
Photonic implementations have largely focussed on achieving long distance
teleportation due to its suitability for decoherence-free communication.
Teleportation also plays a vital role in the scalability of photonic quantum
computing, for which large linear optical networks will likely require an
integrated architecture. Here we report the first demonstration of quantum
teleportation in which all key parts - entanglement preparation, Bell-state
analysis and quantum state tomography - are performed on a reconfigurable
integrated photonic chip. We also show that a novel element-wise
characterisation method is critical to mitigate component errors, a key
technique which will become increasingly important as integrated circuits reach
higher complexities necessary for quantum enhanced operation.Comment: Originally submitted version - refer to online journal for accepted
manuscript; Nature Photonics (2014
- …