8 research outputs found

    Synthesis and evaluation of analogues of HYNIC as bifunctional chelators for technetium

    No full text
    6-Hydrazinonicotinic acid (HYNIC, 1) is a well-established bifunctional technetium-binding ligand often used to synthesise bioconjugates for radiolabelling with Tc-99m. It is capable of efficient capture of technetium at extremely low concentrations, but the structure of the labelled complexes is heterogeneous and incompletely understood. In particular, it is of interest to determine whether, at the no-carrier-added level, it acts in a chelating or non-chelating mode. Here we report two new isomers of HYNIC: 2-hydrazinonicotinic acid (2-HYNIC, 2), which (like 1) is capable of chelation through the mutually ortho hydrazine and pyridine nitrogens and 4-hydrazinonicotinic acid (4-HYNIC, 3), which is not (due to the para-relationship of the hydrazine and pyridine nitrogens). LC-MS shows that the coordination chemistry of 2 with technetium closely parallels that of conventional 1, and no advantages of one over the other in terms of potential labelling efficiency or isomerism were discernable. Both 1 and 2 formed complexes with the loss of 5 protons from the ligand set, whether the co-ligand was tricine or EDDA. Ligand 3, however, failed to complex technetium except at very high ligand concentration: the marked contrast with 1 and 2 suggests that chelation, rather than nonchelating coordination, is a key feature of technetium coordination by HYNIC. Two further new HYNIC analogues, 2-chloro-6- hydrazinonicotinic acid (2-chloro-HYNIC, 4a) and 2,6-dihydrazinonicotinic acid (diHYNIC, 5) were also synthesised. The coordination chemistry of 4a with technetium was broadly parallel to that of 1 and 2 although it was a less efficient chelator, while 5 also behaved as an efficient chelator of technetium, but its coordination chemistry remains poorly defined and requires further investigation before it can sensibly be adopted for 99mTc-labelling. The new analogues 4a and 5 present an opportunity to develop trifunctional HYNIC analogues for more complex bioconjugate synthesis. © 2011 The Royal Society of Chemistry

    Hydrazinonicotinic acid (HYNIC) - Coordination chemistry and applications in radiopharmaceutical chemistry

    No full text
    HYNIC (hydrazinonicotinamide) is an efficient bifunctional chelator for Tc-99m used for labelling biomolecules for molecular imaging. Developments and enhancements to improve its efficacy and versatility, including applications beyond Tc-99m labelling, include designs to allow site specificity, availability of amino acid building blocks, improved protecting groups, and a varied choice of co-ligands. In this review, these enhancements are summarised, along with an assessment of the opportunities afforded and problems posed by the use of HYNIC, a discussion of its coordination mode, and the prospects for improving its use and overcoming some of the limitations. There is now an opportunity to exploit the excellent labelling kinetics associated with the tricine-HYNIC system with better co-ligand design to enable both efficient production of labelled proteins and peptides and better specific activity and in vivo properties. In summary, HYNIC represents a well-established way to exploit the highly reactive hydrazine group, to generate bioconjugate chemistry with a degree of bioorthogonality offering the possibility for highly efficient and site specific modification of biomolecules for imaging. © 2010 Elsevier B.V. All rights reserved

    Synthesis and Characterisation of Zirconium Complexes for Cell Tracking with Zr-89 by Positron Emission Tomography

    No full text
    The increasing availability of the long half-life positron emitter Zr-89 (half life 78.4 h) suggests that it is a strong candidate for cell labelling and hence cell tracking using positron emission tomography. The aim was to produce a range of neutral ZrL4 lipophilic complexes for cell labelling which could be prepared under radiopharmaceutical conditions. This was achieved when the ligand was oxine, tropolone or ethyl maltol. The complexes can be prepared in high yield from zirconium(IV) precursors in hydrochloric or oxalic acid solution. The oxinate and tropolonate complexes were the most amenable to chromatographic characterisation, and HPLC and ITLC protocols have been established to monitor their radiochemical purity. The radiochemical synthesis and quality control of 89Zr(oxinate)4 is reported as well as preliminary cell labelling data for the oxinate, tropolonate and ethyl maltolate complexes which indicates that 89Zr(oxinate)4 is the most promising candidate for further evaluation

    Endovascular Therapy for Aortic Dissection

    No full text

    A Systematic Review on Donepezil-based Derivatives as Potential Cholinesterase Inhibitors for Alzheimer’s Disease

    No full text

    The impact of space experiments on our knowledge of the physics of the universe

    No full text
    corecore