45 research outputs found

    Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension

    Get PDF
    Arterial pulsations are thought to drive CSF flow through perivascular spaces (PVSs), but this has never been quantitatively shown. Using particle tracking to quantify CSF flow velocities in PVSs of live mice, the authors show that flow speeds match the instantaneous speeds of the pulsing artery walls that form the inner boundaries of the PVSs

    Perivascular spaces in the brain:anatomy, physiology and pathology

    Get PDF
    Perivascular spaces include a variety of passageways around arterioles, capillaries and venules in the brain, along which a range of substances can move. Although perivascular spaces were first identified over 150 years ago, they have come to prominence recently owing to advances in knowledge of their roles in clearance of interstitial fluid and waste from the brain, particularly during sleep, and in the pathogenesis of small vessel disease, Alzheimer disease and other neurodegenerative and inflammatory disorders. Experimental advances have facilitated in vivo studies of perivascular space function in intact rodent models during wakefulness and sleep, and MRI in humans has enabled perivascular space morphology to be related to cognitive function, vascular risk factors, vascular and neurodegenerative brain lesions, sleep patterns and cerebral haemodynamics. Many questions about perivascular spaces remain, but what is now clear is that normal perivascular space function is important for maintaining brain health. Here, we review perivascular space anatomy, physiology and pathology, particularly as seen with MRI in humans, and consider translation from models to humans to highlight knowns, unknowns, controversies and clinical relevance

    Development of Protective Autoimmunity by Immunization with a Neural-Derived Peptide Is Ineffective in Severe Spinal Cord Injury

    Get PDF
    Protective autoimmunity (PA) is a physiological response to central nervous system trauma that has demonstrated to promote neuroprotection after spinal cord injury (SCI). To reach its beneficial effect, PA should be boosted by immunizing with neural constituents or neural-derived peptides such as A91. Immunizing with A91 has shown to promote neuroprotection after SCI and its use has proven to be feasible in a clinical setting. The broad applications of neural-derived peptides make it important to determine the main features of this anti-A91 response. For this purpose, adult Sprague-Dawley rats were subjected to a spinal cord contusion (SCC; moderate or severe) or a spinal cord transection (SCT; complete or incomplete). Immediately after injury, animals were immunized with PBS or A91. Motor recovery, T cell-specific response against A91 and the levels of IL-4, IFN-γ and brain-derived neurotrophic factor (BDNF) released by A91-specific T (TA91) cells were evaluated. Rats with moderate SCC, presented a better motor recovery after A91 immunization. Animals with moderate SCC or incomplete SCT showed significant T cell proliferation against A91 that was characterized chiefly by the predominant production of IL-4 and the release of BDNF. In contrast, immunization with A91 did not promote a better motor recovery in animals with severe SCC or complete SCT. In fact, T cell proliferation against A91 was diminished in these animals. The present results suggest that the effective development of PA and, consequently, the beneficial effects of immunizing with A91 significantly depend on the severity of SCI. This could mainly be attributed to the lack of TA91 cells which predominantly showed to have a Th2 phenotype capable of producing BDNF, further promoting neuroprotection

    Reflexiones desde la enseñanza y el aprendizaje de la arquitectura 2

    Get PDF
    La segunda entrega del libro Doceo “Reflexiones desde la enseñanza y el aprendizaje de la arquitectura”, es fruto de metodologías de enseñanza- aprendizaje diseñadas para cada caso, y que representan la impronta personal de cada autor. Es importante resaltar, que todos los argumentos presentados en esta obra corresponden a experiencias en el aula, conclusiones de docentes y/o estudiantes en el marco de una asignatura desarrollada en la Universidad de la Costa con sede en Barranquilla, Colombia. El Volumen dos de esta entrega se ha editado progresivamente, en una primera parte la compilación estuvo a cargo de la profesora Stephania Mouthon, quien centralizó todos los manuscritos, luego de esto, hemos construido de manera conjunta el diseño editorial, estructura del cuerpo y demás aspectos de perfeccionamiento del documento.Departamento de Arquitectura, Universidad de la Cost

    The Brain's Glymphatic System:Current Controversies

    No full text
    The glymphatic concept along with the discovery of meningeal lymphatic vessels have in recent years highlighted that fluid is directionally transported within the central nervous system. Imaging studies, as well as manipulations of fluid transport, point to a key role of the glymphatic-lymphatic system in clearance of amyloid-β and other proteins. As such, the glymphatic-lymphatic system represents a new target in combating neurodegenerative diseases. Not unexpectedly, introduction of a new plumbing system in the brain has stirred controversies. This review will highlight what we know about the brain’s fluid transport systems, where experimental data are lacking, and what is still debated
    corecore