15 research outputs found

    Endothelial Cell-Derived Nitric Oxide Enhances Aerobic Glycolysis in Astrocytes via HIF-1α-Mediated Target Gene Activation.

    Get PDF
    Astrocytes exhibit a prominent glycolytic activity, but whether such a metabolic profile is influenced by intercellular communication is unknown. Treatment of primary cultures of mouse cortical astrocytes with the nitric oxide (NO) donor DetaNONOate induced a time-dependent enhancement in the expression of genes encoding various glycolytic enzymes as well as transporters for glucose and lactate. Such an effect was shown to be dependent on the hypoxia-inducible factor HIF-1α, which is stabilized and translocated to the nucleus to exert its transcriptional regulation. NO action was dependent on both the PI3K/Akt/mTOR and MEK signaling pathways and required the activation of COX, but was independent of the soluble guanylate cyclase pathway. Furthermore, as a consequence of NO treatment, an enhanced lactate production and release by astrocytes was evidenced, which was prevented by downregulating HIF-1α. Several brain cell types represent possible sources of NO. It was found that endothelial cells, which express the endothelial NO synthase (eNOS) isoform, constitutively produced the largest amount of NO in culture. When astrocytes were cocultured with primary cultures of brain vascular endothelial cells, stabilization of HIF-1α and an enhancement in glucose transporter-1, hexokinase-2, and monocarboxylate transporter-4 expression as well as increased lactate production was found in astrocytes. This effect was inhibited by the NOS inhibitor l-NAME and was not seen when astrocytes were cocultured with primary cultures of cortical neurons. Our findings suggest that endothelial cell-derived NO participates to the maintenance of a high glycolytic activity in astrocytes mediated by astrocytic HIF-1α activation

    The battle for chitin recognition in plant-microbe interactions

    No full text
    Fungal cell walls play dynamic functions in interaction of fungi with their surroundings. In pathogenic fungi, the cell wall is the first structure to make physical contact with host cells. An important structural component of fungal cell walls is chitin, a well-known elicitor of immune responses in plants. Research into chitin perception has sparked since the chitin receptor from rice was cloned nearly a decade ago. Considering the widespread nature of chitin perception in plants, pathogens evidently evolved strategies to overcome detection, including alterations in the composition of cell walls, modification of their carbohydrate chains and secretion of effectors to provide cell wall protection or target host immune responses. Also non-pathogenic fungi contain chitin in their cell walls and are recipients of immune responses. Intriguingly, various mutualists employ chitin-derived signaling molecules to prepare their hosts for the mutualistic relationship. Research on the various types of interactions has revealed different molecular components that play crucial roles and, moreover, that various chitin-binding proteins contain dissimilar chitin-binding domains across species that differ in affinity and specificity. Considering the various strategies from microbes and hosts focused on chitin recognition, it is evident that this carbohydrate plays a central role in plant–fungus interactions

    Phosphorylation of elongation factor Tu prevents ternary complex formation

    No full text
    The elongation factor Tu (EF-Tu) is a member of the GTP/GDP-binding proteins and interacts with various partners during the elongation cycle of protein biosynthesis thereby mediating the correct binding of amino-acylated transfer RNA (aa-tRNA) to the acceptor site (A-site) of the ribosome. After GTP hydrolysis EF-Tu is released in its GDP-bound state. In vivo, EF-Tu is post-translationally modified by phosphorylation. Here we report that the phosphorylation of EF-Tu by a ribosome associated kinase activity is drastically enhanced by EF-Ts. The antibiotic kirromycin, known to block EF-Tu function, inhibits the modification. This effect is specific, since kirromycin-resistant mutants do become phosphorylated in the presence of the antibiotic. On the other hand, phosphorylated wild-type EF-Tu does not bind kirromycin. Most interestingly, the phosphorylation of EF-Tu abolishes its ability to bind aa-tRNA. In the GTP conformation the site of modification is located at the interface between domains 1 and 3 and is involved in a strong interdomain hydrogen bond. Introduction of a charged phosphate group at this position will change the interaction between the domains, leading to an opening of the molecule reminiscent of the GDP conformation. A model for the function of EF-Tu phosphorylation in protein biosynthesis is presented

    Structural and mechanistic analysis of the membrane embedded glycosyltransferase WaaA required for lipopolysaccharide synthesis

    No full text
    WaaA is a key enzyme in the biosynthesis of LPS, a critical component of the outer envelope of Gram-negative bacteria. Embedded in the cytoplasmic face of the inner membrane, WaaA catalyzes the transfer of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) to the lipid A precursor of LPS. Here we present crystal structures of the free and CMP-bound forms of WaaA from Aquifex aeolicus, an ancient Gram-negative hyperthermophile. These structures reveal details of the CMP-binding site and implicate a unique sequence motif (GGS/TX(5)GXNXLE) in Kdo binding. In addition, a cluster of highly conserved amino acid residues was identified which represents the potential membrane-attachment and acceptor-substrate binding site of WaaA. A series of site-directed mutagenesis experiments revealed critical roles for glycine 30 and glutamate 31 in Kdo transfer. Our results provide the structural basis of a critical reaction in LPS biosynthesis and allowed the development of a detailed model of the catalytic mechanism of WaaA

    3C Protease of Enterovirus 68 Structure Based Design of Michael Acceptor Inhibitors and Their Broad Spectrum Antiviral Effects Against Picornaviruses.

    No full text
    We have determined the cleavage specificity and the crystal structure of the 3C protease of enterovirus 68 (EV68 3C(pro)). The protease exhibits a typical chymotrypsin fold with a Cys...His...Glu catalytic triad; its three-dimensional structure is closely related to that of the 3C(pro) of rhinovirus 2, as well as to that of poliovirus. The phylogenetic position of the EV68 3C(pro) between the corresponding enzymes of rhinoviruses on the one hand and classical enteroviruses on the other prompted us to use the crystal structure for the design of irreversible inhibitors, with the goal of discovering broad-spectrum antiviral compounds. We synthesized a series of peptidic α,β-unsaturated ethyl esters of increasing length and for each inhibitor candidate, we determined a crystal structure of its complex with the EV68 3C(pro), which served as the basis for the next design round. To exhibit inhibitory activity, compounds must span at least P3 to P1′; the most potent inhibitors comprise P4 to P1′. Inhibitory activities were found against the purified 3C protease of EV68, as well as with replicons for poliovirus and EV71 (50% effective concentration [EC(50)] = 0.5 μM for the best compound). Antiviral activities were determined using cell cultures infected with EV71, poliovirus, echovirus 11, and various rhinovirus serotypes. The most potent inhibitor, SG85, exhibited activity with EC(50)s of ≈180 nM against EV71 and ≈60 nM against human rhinovirus 14 in a live virus–cell-based assay. Even the shorter SG75, spanning only P3 to P1′, displayed significant activity (EC(50) = 2 to 5 μM) against various rhinoviruses
    corecore