386 research outputs found

    Universality and saturation of intermittency in passive scalar turbulence

    Full text link
    The statistical properties of a scalar field advected by the non-intermittent Navier-Stokes flow arising from a two-dimensional inverse energy cascade are investigated. The universality properties of the scalar field are directly probed by comparing the results obtained with two different types of injection mechanisms. Scaling properties are shown to be universal, even though anisotropies injected at large scales persist down to the smallest scales and local isotropy is not fully restored. Scalar statistics is strongly intermittent and scaling exponents saturate to a constant for sufficiently high orders. This is observed also for the advection by a velocity field rapidly changing in time, pointing to the genericity of the phenomenon. The persistence of anisotropies and the saturation are both statistical signatures of the ramp-and-cliff structures observed in the scalar field.Comment: 4 pages, 8 figure

    Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?

    Get PDF
    Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction

    Comment on the narrow structure reported by Amaryan et al

    Full text link
    The CLAS Collaboration provides a comment on the physics interpretation of the results presented in a paper published by M. Amaryan et al. regarding the possible observation of a narrow structure in the mass spectrum of a photoproduction experiment.Comment: to be published in Physical Review

    Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab

    Full text link
    We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies; results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.Comment: 22 pages, 16 figure

    Photoproduction of K+K− meson pairs on the proton

    Get PDF
    The exclusive reaction γp→pK+K− was studied in the photon energy range 3.0–3.8  GeV and momentum transfer range 0.6<−t<1.3  GeV2. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range the integrated luminosity was approximately 20  pb−1. The reaction was isolated by detecting the K+ and the proton in CLAS, and reconstructing the K− via the missing-mass technique. Moments of the dikaon decay angular distributions were extracted from the experimental data. Besides the dominant contribution of the ϕ meson in the P wave, evidence for S−P interference was found. The differential production cross sections dσ/dt for individual waves in the mass range of the ϕ resonance were extracted and compared to predictions of a Regge-inspired model. This is the first time the t-dependent cross section of the S-wave contribution to the elastic K+K− photoproduction has been measured

    Electromagnetic Meson Production in the Nucleon Resonance Region

    Full text link
    Recent experimental and theoretical advances in investigating electromagnetic meson production reactions in the nucleon resonance region are reviewed.Comment: 75 pages, 42 figure

    Q2Q^2 Dependence of Quadrupole Strength in the γpΔ+(1232)pπ0\gamma^*p\to\Delta^+(1232)\to p \pi^0 Transition

    Full text link
    Models of baryon structure predict a small quadrupole deformation of the nucleon due to residual tensor forces between quarks or distortions from the pion cloud. Sensitivity to quark versus pion degrees of freedom occurs through the Q2Q^2 dependence of the magnetic (M1+M_{1+}), electric (E1+E_{1+}), and scalar (S1+S_{1+}) multipoles in the γpΔ+pπ0\gamma^* p \to \Delta^+ \to p \pi^0 transition. We report new experimental values for the ratios E1+/M1+E_{1+}/M_{1+} and S1+/M1+S_{1+}/M_{1+} over the range Q2Q^2= 0.4-1.8 GeV2^2, extracted from precision p(e,ep)πp(e,e 'p)\pi^{\circ} data using a truncated multipole expansion. Results are best described by recent unitary models in which the pion cloud plays a dominant role.Comment: 5 pages, 5 figures, 1 table. To be published in Phys. Rev. Lett. (References, figures and table updated, minor changes.

    The e p -> e' p eta reaction at and above the S11(1535) baryon resonance

    Full text link
    New cross sections for the reaction e p -> ep eta are reported for total center of mass energy W = 1.5--1.86 GeV and invariant momentum transfer Q^2 = 0.25--1.5 GeV^2. This large kinematic range allows extraction of important new information about response functions, photocouplings, and eta N coupling strengths of baryon resonances. Expanded W coverage shows sharp structure at W \~ 1.7 GeV; this is shown to come from interference between S and P waves and can be interpreted in terms of known resonances. Improved values are derived for the photon coupling amplitude for the S11(1535) resonance.Comment: 11 pages, RevTeX, 5 figures, submitted to Phys. Rev. Let

    Particles and fields in fluid turbulence

    Full text link
    The understanding of fluid turbulence has considerably progressed in recent years. The application of the methods of statistical mechanics to the description of the motion of fluid particles, i.e. to the Lagrangian dynamics, has led to a new quantitative theory of intermittency in turbulent transport. The first analytical description of anomalous scaling laws in turbulence has been obtained. The underlying physical mechanism reveals the role of statistical integrals of motion in non-equilibrium systems. For turbulent transport, the statistical conservation laws are hidden in the evolution of groups of fluid particles and arise from the competition between the expansion of a group and the change of its geometry. By breaking the scale-invariance symmetry, the statistically conserved quantities lead to the observed anomalous scaling of transported fields. Lagrangian methods also shed new light on some practical issues, such as mixing and turbulent magnetic dynamo.Comment: 165 pages, review article for Rev. Mod. Phy

    Towards a resolution of the proton form factor problem: new electron and positron scattering data

    Full text link
    There is a significant discrepancy between the values of the proton electric form factor, GEpG_E^p, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GEpG_E^p from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ε\varepsilon) and momentum transfer (Q2Q^2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ε\varepsilon at Q2=1.45 GeV2Q^2 = 1.45 \text{ GeV}^2. This measurement is consistent with the size of the form factor discrepancy at Q21.75Q^2\approx 1.75 GeV2^2 and with hadronic calculations including nucleon and Δ\Delta intermediate states, which have been shown to resolve the discrepancy up to 232-3 GeV2^2.Comment: 6 pages, 4 figures, submitted to PR
    corecore