376 research outputs found

    Flow distributed oscillation, flow velocity modulation and resonance

    Full text link
    We examine the effects of a periodically varying flow velocity on the standing and travelling wave patterns formed by the flow-distributed oscillation (FDO) mechanism. In the kinematic (or diffusionless) limit, the phase fronts undergo a simple, spatiotemporally periodic longitudinal displacement. On the other hand, when the diffusion is significant, periodic modulation of the velocity can disrupt the wave pattern, giving rise in the downstream region to travelling waves whose frequency is a rational multiple of the velocity perturbation frequency. We observe frequency locking at ratios of 1:1, 2:1 and 3:1, depending on the amplitude and frequency of the velocity modulation. This phenomenon can be viewed as a novel, rather subtle type of resonant forcing.Comment: submitted to Phys. Rev.

    Performances of the PS<sup>2</sup> parallel storage and processing system for tomographic image visualization

    Get PDF
    We propose a new approach for developing parallel I/O- and compute-intensive applications. At a high level of abstraction, a macro data flow description describes how processing and disk access operations are combined. This high-level description (CAP) is precompiled into compilable and executable C++ source language. Parallel file system components specified by CAP are offered as reusable CAP operations. Low-level parallel file system components can, thanks to the CAP formalism, be combined with processing operations in order to yield efficient pipelined parallel I/O and compute intensive programs. The underlying parallel system is based on commodity components (PentiumPro processors, Fast Ethernet) and runs on top of WindowsNT. The CAP-based parallel program development approach is applied to the development of an I/O and processing intensive tomographic 3D image visualization application. Configurations range from a single PentiumPro I-disk system to a four PentiumPro 27-disk system. We show that performances scale well when increasing the number of processors and disks. With the largest configuration, the system is able to extract in parallel and project into the display space between three and four 512&times;512 images per second. The images may have any orientation and are extracted from a 100 MByte 3D tomographic image striped over the available set of disk

    Human Wharton’s jelly mesenchymal stromal cell-derived small extracellular vesicles drive oligodendroglial maturation by restraining MAPK/ERK and Notch signaling pathways.

    Get PDF
    Peripartum cerebral hypoxia and ischemia, and intrauterine infection and inflammation, are detrimental for the precursor cells of the myelin-forming oligodendrocytes in the prematurely newborn, potentially leading to white matter injury (WMI) with long-term neurodevelopmental sequelae. Previous data show that hypomyelination observed in WMI is caused by arrested oligodendroglial maturation rather than oligodendrocyte-specific cell death. In a rat model of premature WMI, we have recently shown that small extracellular vesicles (sEV) derived from Wharton's jelly mesenchymal stromal cells (WJ-MSC) protect from myelination deficits. Thus, we hypothesized that sEV derived from WJ-MSC directly promote oligodendroglial maturation in oligodendrocyte precursor cells. To test this assumption, sEV were isolated from culture supernatants of human WJ-MSC by ultracentrifugation and co-cultured with the human immortalized oligodendrocyte precursor cell line MO3.13. As many regulatory functions in WMI have been ascribed to microRNA (miR) and as sEV are carriers of functional miR which can be delivered to target cells, we characterized and quantified the miR content of WJ-MSC-derived sEV by next-generation sequencing. We found that WJ-MSC-derived sEV co-localized with MO3.13 cells within 4 h. After 5 days of co-culture, the expression of myelin basic protein (MBP), a marker for mature oligodendrocytes, was significantly increased, while the oligodendrocyte precursor marker platelet-derived growth factor alpha (PDGFRα) was decreased. Notch and MAPK/ERK pathways known to inhibit oligodendrocyte maturation and differentiation were significantly reduced. The pathway enrichment analysis showed that the miR present in WJ-MSC-derived sEV target genes having key roles in the MAPK pathway. Our data strongly suggest that sEV from WJ-MSC directly drive the maturation of oligodendrocyte precursor cells by repressing Notch and MAPK/ERK signaling

    The Lausanne Infant Crying Stress Paradigm: Validation of an Early Postpartum Stress Paradigm with Women at Low vs. High Risk of Childbirth-Related Posttraumatic Stress Disorder.

    Get PDF
    Stress reactivity is typically investigated in laboratory settings, which is inadequate for mothers in maternity settings. This study aimed at validating the Lausanne Infant Crying Stress Paradigm (LICSP) as a new psychosocial stress paradigm eliciting psychophysiological stress reactivity in early postpartum mothers (n = 52) and to compare stress reactivity in women at low (n = 28) vs. high risk (n = 24) of childbirth-related posttraumatic stress disorder (CB-PTSD). Stress reactivity was assessed at pre-, peri-, and post-stress levels through salivary cortisol, heart rate variability (high-frequency (HF) power, low-frequency (LF) power, and LF/HF ratio), and perceived stress via a visual analog scale. Significant time effects were observed for all stress reactivity outcomes in the total sample (all p &lt; 0.01). When adjusting for perceived life threat for the infant during childbirth, high-risk mothers reported higher perceived stress (p &lt; 0.001, d = 0.91) and had lower salivary cortisol release (p = 0.023, d = 0.53), lower LF/HF ratio (p &lt; 0.001, d = 0.93), and marginally higher HF power (p = 0.07, d = 0.53) than low-risk women. In conclusion, the LICSP induces subjective stress and autonomic nervous system (ANS) reactivity in maternity settings. High-risk mothers showed higher perceived stress and altered ANS and hypothalamic-pituitary-adrenal reactivity when adjusting for infant life threat. Ultimately, the LICSP could stimulate (CB-)PTSD research

    Is Lone Hypertension a Risk Factor for More Severe COVID-19 Outcomes?

    Get PDF
    Background Based on current evidence, it is not clear whether lone hypertension increases the risk for severe illness from COVID-19, or if increased risk is mainly associated with age, obesity and diabetes. The objective of the study was to evaluate whether lone hypertension is associated with increase mortality or a more severe course of COVID-19, and if treatment and control of hypertension mitigates this risk. Methods This is a prospective multi-center observational cohort study with 30-day outcomes of 9,531 consecutive SARS-CoV-2 PCR-positive patients ≥ 18 years old (41.9 ± 9.7 years, 49.2% male), Uzbekistan, June 1-September 30, 2020. Patients were subclassified according to JNC8 criteria into six blood pressure stages. Univariable and multiple logistic regression was conducted to examine how variables predict outcomes. Results The 30-days all-cause mortality was 1.18% (n = 112) in the whole cohort. After adjusting for age, sex, history of myocardial infarction (MI), type-2 diabetes, and obesity, none of six JNC8 groups showed any significant difference in all-cause mortality. However, age was associated with an increased risk of 30-days all-cause mortality (OR = 1.09, 95%CI [1.07-1.12], p < 0.001), obesity (OR = 7.18, 95% CI [4.18-12.44], p < 0.001), diabetes (OR 4.18, 95% CI [2.58-6.76], p < 0.001), and history of MI (OR = 2.68, 95% CI [1.67-4.31], p < 0.001). In the sensitivity test, being ≥ 65 years old increased mortality 10.56-fold (95% CI [5.89-18.92], p < 0.001). Hospital admission was 12.4% (n = 1,183), ICU admission 1.38% (n = 132). The odds of hospitalization increased having stage-2 untreated hypertension (OR = 4.51, 95%CI [3.21-6.32], p < 0.001), stage-1 untreated hypertension (OR = 1.97, 95%CI [1.52-2.56], p < 0.001), and elevated blood pressure (OR = 1.82, 95% CI [1.42-2.34], p < 0.001). Neither stage-1 nor stage-2 treated hypertension patients were at statistically significant increased risk for hospitalization after adjusting for confounders. Presenting with stage-2 untreated hypertension increased the odds of ICU admission (OR = 3.05, 95 %CI [1.57-5.93], p = 0.001). Conclusions Lone hypertension did not increase COVID-19 mortality or in treated patients risk of hospitalization

    Synthesizing parallel imaging applications using the CAP Computer-Aided Parallelization tool

    Get PDF
    Imaging applications such as filtering, image transforms and compression/decompression require vast amounts of computing power when applied to large data sets. These applications would potentially benefit from the use of parallel processing. However, dedicated parallel computers are expensive and their processing power per node lags behind that of the most recent commodity components. Furthermore, developing parallel applications remains a difficult task. In order to facilitate the development of parallel applications, we propose the CAP computer aided parallelization tool which enables application programmers to specify at a high level of abstraction the flow of data between pipelined parallel operations. In addition, the CAP tool supports the programmer in developing parallel imaging and storage operations. CAP enables combining efficiently parallel storage access routines and image processing sequential operations. The paper shows how processing and I/O intensive imaging applications must be implemented to take advantage of parallelism and pipelining between data access and processing. The paper's contribution is: (1) to show how such implementations can be compactly specified in CAP; and (2) to demonstrate that CAP specified applications achieve the performance of custom parallel code. The paper analyzes theoretically the performance of CAP specified applications and demonstrates the accuracy of the theoretical analysis through experimental measurement

    A Parallel PC-based Visible Human Slice WEB server

    Get PDF
    Visualization of 3D tomographic images by slicing, i.e. by intersecting a 3D tomographic image with a plane having any desired position and orientation is a tool of choice both for learning and for diagnosis purposes. In this project, a parallel Visible Human Slice Web server has been developed, which offers to any Web client the capability of interactively specifying the exact position and orientation of a desired slice and of requesting and obtaining that slice from a 3D tomographic volume, made of either CT, MRI or cryosection images (digital color photographs of cross-sections). For interactive slice position and orientation, a miniature 3D version of the full image is used

    The visible human slice Web server: a first assessment

    Get PDF
    The visible human slice server started offering its slicing services at the end of June 1998. From that date until the end of May, more than 280000 slices were extracted from the Visible Man, by laymen interested in anatomy, by students and by specialists. The Slice Server is based one Bi-Pentium PC and 16 disks. It is a scaled down version of a powerful parallel server comprising 5 Bi-Pentium Pro PCs and 60 disks. The parallel server program was created thanks to a computer-aided parallelization framework, which takes over the task of creating a multithreaded pipelined parallel program from a high-level parallel program description. On the full blown architecture, the parallel program enables the extraction and resampling of up to 5 color slices per second. Extracting 5 slice/s requires to access the disks and extract subvolumes of the Visible Human at an aggregate throughput of 105 MB/s. The publicly accessible server enables to extract slices having any orientation. The slice position and orientation can either be specified for each slice separately or as a position and orientation offered by a Java applet and possible future improvements. In the very near future, the Web Slice Server will offer additional services, such as the possibility to extract ruled surfaces and to extract animations incorporating slices perpendicular to a user defined trajector

    The validity of parental reports on motor skills performance level in preschool children: a comparison with a standardized motor test.

    Get PDF
    Motor skills are interrelated with essential domains of childhood such as cognitive and social development. Thus, the evaluation of motor skills and the identification of atypical or delayed motor development is crucial in pediatric practice (e.g., during well-child visits). Parental reports on motor skills may serve as possible indicators to decide whether further assessment of a child is necessary or not. We compared parental reports on fundamental motor skills performance level (e.g., hopping, throwing), based on questions frequently asked in pediatric practice, with a standardized motor test in 389 children (46.5% girls/53.5% boys, M age = 3.8 years, SD = 0.5, range 3.0-5.0 years) from the Swiss Preschoolers' Health Study (SPLASHY). Motor skills were examined using the Zurich Neuromotor Assessment 3-5 (ZNA3-5), and parents filled in an online questionnaire on fundamental motor skills performance level. The results showed that the answers from the parental report correlated only weakly with the objectively assessed motor skills (r = .225, p &lt; .001). Although a parental screening instrument for motor skills would be desirable, the parent's report used in this study was not a valid indicator for children's fundamental motor skills. Thus, we may recommend to objectively examine motor skills in clinical practice and not to exclusively rely on parental report. What is Known: • Early assessment of motor skills in preschool children is important because motor skills are essential for the engagement in social activities and the development of cognitive abilities. Atypical or delayed motor development can be an indicator for different developmental needs or disorders. • Pediatricians frequently ask parents about the motor competences of their child during well-child visits. What is New: • The parental report on fundamental motor skills performance level used in this study was not a reliable indicator for describing motor development in the preschool age. • Standardized examinations of motor skills are required to validly assess motor development in preschoolers

    Developmental regulation of MURF E3 ubiquitin ligases in skeletal muscle

    Get PDF
    The striated muscle-specific tripartite motif (TRIM) proteins TRIM63/MURF1, TRIM55/MURF2 and TRIM54/MURF3 can function as E3 ubiquitin ligases in ubiquitin-mediated muscle protein turnover. Despite the well-characterised role of MURF1 in skeletal muscle atrophy, the dynamics of MURF isogene expression in the development and early postnatal adaptation of skeletal muscle is unknown. Here, we show that MURF2 is the isogene most highly expressed in embryonic skeletal muscle at E15.5, with the 50 kDa A isoform predominantly expressed. MURF1 and MURF3 are upregulated only postnatally. Knockdown of MURF2 p50A by isoform-specific siRNA results in delayed myogenic differentiation and myotube formation in vitro, with perturbation of the stable, glutamylated microtubule population. This underscores that MURF2 plays an important role in the earliest stages of skeletal muscle differentiation and myofibrillogenesis. During further development, there is a shift towards the 60 kDa A isoform, which dominates postnatally. Analysis of the fibre-type expression shows that MURF2 A isoforms are predominantly slow-fibre associated, whilst MURF1 is largely excluded from these fibres, and MURF3 is ubiquitously distributed in both type I and II fibres
    corecore