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Abstract. Imaging applications such as filtering, image transforms and compres-
sion/decompression require vast amounts of computing power when applied to large data
sets. These applications would potentially benefit from the use of parallel processing.
However, dedicated parallel computers are expensive and their processing power per node
lags behind that of the most recent commodity components. Furthermore, developing par-
allel applications remains a difficult task : writing and debugging the application is diffi-
cult (deadlocks), programs may not be portable from one parallel architecture to the other,
and performance often comes short of expectations. 

In order to facilitate the development of parallel applications, we propose the CAP com-
puter-aided parallelization tool which enables application programmers to specify at a
high-level of abstraction the flow of data between pipelined-parallel operations. In addi-
tion, the CAP tool supports the programmer in developing parallel imaging and storage
operations. CAP enables combining efficiently parallel storage access routines and image
processing sequential operations. This paper shows how processing and I/O intensive
imaging applications must be implemented to take advantage of parallelism and pipelining
between data access and processing. This paper’s contribution is (1) to show how such
implementations can be compactly specified in CAP, and (2) to demonstrate that CAP
specified applications achieve the performance of custom parallel code. The paper ana-
lyzes theoretically the performance of CAP specified applications and demonstrates the
accuracy of the theoretical analysis through experimental measurements.

1  Introduction 

Imaging computations such as filtering, image transforms, compression/decompression and image content indexing
[3,4] require, when applied to large data sets (such as 3-D medical images, satellite images and aerial photographs),
vast amounts of computing power. Such applications would potentially benefit from the use of parallel processing.
However, dedicated parallel computers are expensive and their processing power per node lags behind that of the
most recent commodity components. Moreover, developing parallel applications remains a difficult task : writing and
debugging the application is difficult (deadlocks), programs are not portable, and performance often comes short of
expectations. 

In order to facilitate the development of parallel applications, we propose the CAP computer-aided parallelization
tool which enables application programmers to specify at a high-level of abstraction the flow of data between pipe-
lined-parallel operations.The CAP environment supports the programmer in developing parallel imaging applica-
tions. The CAP environment features (1) support for the parallel storage of large data sets ; (2) an image library
supporting 1-bit, 8-bit, 16-bit, 24-bit images, as well as the division of images in tiles of user-defined size ; (3) the
CAP language extension to C++ which allows to write deadlock-free portable pipelined-parallel applications, and
combine parallel storage access routines and image processing operations. 

This paper shows how processing and I/O-intensive imaging applications can be implemented to take advantage of
parallelism and pipelining between data access and processing operations. This paper’s contribution is (1) to show
how such implementations can be compactly specified using the CAP set of flow control instructions, and (2) to dem-
onstrate that CAP specified applications achieve the performance of custom code. The paper analyzes theoretically
the performance of CAP specified applications and demonstrates the accuracy of the theoretical analysis through
experimental measurements. To implement I/O intensive applications, large 2D (resp. 3D) images are divided into
square (resp. cubic) subsets with good locality called tiles. Two kinds of applications are considered in this paper :
neighborhood-independent operations, and neighborhood-dependent operations. Neighborhood-independent opera-
tions are operations where no data must be exchanged between tiles to compute the resulting final image.

Section 2 shows how large images are divided in tiles for storage and processing purposes. Section 3 describes in gen-
eral terms the process-and-gather operation, i.e. the problem of applying a neighborhood-independent operation to
selected tiles stored on disk(s) and gathering the processed tiles in a single address space. It shows the ideal execution
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schedule for performing a process-and-gather operation and analyzes theoretically the performance of such a sched-
ule. Section 4 shows how process-sand-gather operation is specified in CAP. Section 5 describes the exchange-pro-
cess-and-store operation, i.e. the problem of applying a neighborhood-dependent operation to tiles stored on disk(s)
and storing the result back to disk(s). Section 6 lists performance results for the process-and-gather and exchange-pro-
cess-and-store parallel operations. 

FIGURE 1. Commodity component based parallel architecture

2  System support for managing large images

2.1  Hardware architecture
The hardware we consider consists of multiple PentiumPro PC’s connected through a commodity 1000Mb/s network
such as FDDI or Fast Ethernet (Figure 1). The PCs run the WindowsNT operating system and communicate using the
TCP/IP-based MPS message-passing system developed by the authors. Each PC represents a storage/processing node
(S/P node) consisting of one or two processors connected through its PCI internal bus to one or more disks. The client
requesting some image processing operation is also located on a PC. This platform scales from a single PC architec-
ture with one processor and one disk, to a multiple-PC multiple-disk architecture. For the purpose of comparing mod-
eled and measured performance figures, we will assume single processor PCs. We assume that both the disk and the
network can access memory through DMA (Direct Memory Access). While this hypothesis is accurate for disks2, net-
work interfaces based on the TCP/IP protocol consume a lot of processing power3.

FIGURE 2. Image tiling and visualization window

2.2  Software architecture
Large images are divided in square tiles which are stored independently, possibly on multiple disks. Pixmap image til-
ing is routinely used for the internal representation of images in software packages such as PhotoShop. Square tiles
enable accessing image windows efficiently, with a good data locality. The CAP imaging library provides data types
and functions for splitting images in tiles, and allocating tiles to disks. Figure 2 shows an image divided in tiles, as
well as a visualization window covering part of the image. Figure 2 also shows a possible allocation of tiles to disks,
assuming an image striped over 8 disks. The allocation index consists of the disk index, as well as the local tile index
on the disk. For example, the bottom right tile in Figure 2 is allocated on disk 3, and is the 6th tile on that disk. The

2.  Our experience shows that for disk throughputs of up to 45 MB/s (throughput achieved by connecting 15 disks to 
5 SCSI boards, the processor utilization remains below 15%.

3.  Our experience shows that a PentiumPro processor reaches a 100% utilization rate when the Fast-Ethernet 
throughput reaches 5MB/s.
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distribution of tiles to disks is made so as to ensure that direct tile neighbors reside on different disks. We achieve
such a distribution by introducing, between two successive rows of tiles (and between two successive planes of tiles
in the case of 3-D images), offsets which are prime to the number of disks.

The data types required in this example are the WindowT and the TileT classes, provided in the CAP imaging library
(Program:1). The WindowT class fields are a file name, the window position within an image, the window size, the
window data, and a pixel descriptor (pixel size in bit, color scheme (gray level, RGB, ...). The WindowT class is used
both to specify a window request parameters (in which case the data field is empty), as well as the window itself. The
TileT class fields give its position, its size, the tile data, a pixel descriptor, as well as the index of the disk where the
tile is stored, and the local index of the tile on the disk. 

PROGRAM 1. CAP imaging-package data-types
Program 2 lists a simple sequential program which performs a process-and-gather operation. It assumes that the
whole window to be processed is in memory. The while loop (lines 12 to 16) repeatedly calls the GetNextTileInWindow
routine, until it returns 0. At each iteration, the GetNextTileInWindow routine returns the next window tile (nextP
parameter), based on the window description (windowP parameter) and the previous window tile (prevP parameter).
The first time the GetNextTileInWindow is called, the prevP parameter is 0. In the body of the while loop (lines 13 to
15), the new tile is processed using the user-defined ProcessTile routine. In this simple program, all tiles are processed
independently. When the tile is processed, the result is merged into the final window using the MergeAndAddTile rou-
tine. This simple routine handles correctly neighborhood-independent and linear filtering operations (see section 3.1)
The GetNextTileInWindow and the MergeAndAddTile are provided by the CAP imaging library. The ProcessTile routine
is user-defined.

PROGRAM 2. Sequential processing of a window, tile by tile
The next sections show more sophisticated imaging programs which in a pipelined-parallel manner access tiles stored
on disks and perform on it processing operations. 

FIGURE 3. Applying a linear filtering operation to a tiled 1-D image

3  The parallel process-and-gather operation

3.1  Problem description
A process-and-gather operation consists of reading tiles from the disk(s), performing a neighborhood-independent
operation on the tiles, gathering the processed tiles in a single address space, and merging the tiles to form the final
visualization window. The S/P nodes perform the neighborhood-independent operation, and send the processed tiles
to the client PC, where processed tiles are merged to form the final image. Linear filtering fits the process-and-gather

1 class WindowT {
2 char* FileName ;
3 int PositionX, PositionY ;
4 int SizeX, SizeY ;
5 char* DataP ;
6 PixelDescriptorT Descr ;
7 } ;

1 class TileT {
2 int DiskIndex
3 int LocaTileIndex ;
4 int PositionX, PositionY ;
5 int SizeX, SizeY ;
6 char* DataP ;
7 PixelDescriptorT Descr ;
8 } ;

1 int GetNextTileInWindow (WindowT* windowP, TileT* prevP, TileT* &nextP) ;
2 void MergeAndAddTile (WindowT* windowP, TileT* tileP) ;
3 void ProcessTile (TileT* inputP, TileT* &outputP) ;
4
5 void ProcessWindowByTile (WindowT* inputP, WindowT* &outputP)
6
7 {
8 TileT* prevP = 0 ;
9 TileT* nextP ;
10 TileT* processedTileP ;
11 outputP = new WindowT (...) ;
12 while (GetNextTileInWindow (inputP, prevP, nextP)) {
13 ProcessTile (nextP, processedTileP) ;
14 MergeAndAddTile (outputP, processTileP) ;
15 prevP = nextP ;
16 }
17 }
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scheme (Figure 3). The linear operation is performed on each tile, assuming that pixels beyond the tile border are set
to 0. The linear filtering operation generates enlarged tiles. After filtering, tiles overlap. When merging the tiles to
form the final image, the overlapping part of the tiles are added together, leading to the correct final result. As an
example, we filter a 1-D gray-level image, by averaging pixels with a 3-by-1 convolution kernel (Figure 3). In Figure
3, a 3-by-1 convolution kernel is applied to an 8-pixel vector, with and without tiling. Both situations assume that pix-
els outside the range of the vector are 0. With tiling, the filter is applied to two 4-pixel vector slices, and both vector
slices grow to 6 pixels after filtering. The overlapping parts of the vector slices are then added at tile-merging time to
recover the correct 8-pixel vector.

3.2  Modelled single-PC execution schedule
This hardware configuration consists of a single PC reading data from the disks, performing the neighborhood-inde-
pendent operations on all tiles, and merging the processed tiles. We assume that the disks read tiles faster than the pro-
cessor can handle them (Figure 4). 

FIGURE 4. Execution schedule (single PC, multiple disks, processor bottleneck)
The schedule described in Figure 4 guarantees that the PC processor is busy at all times, after the first tile has been
fetched. In this model, all disk accesses but the first one are performed while the processor is busy.

3.3  Modelled multiple-PC execution schedule
Figure 5 shows the ideal execution schedule for a multiple S/P node situation. We assume that the disks read tiles
faster than the processors can handle them, that the network transfers processed tiles faster than the processor can pro-
duce them, and that the client PC merges processed tiles faster than the network can transfer them. 

FIGURE 5. Execution schedule (multiple single-processor PCs with two disks, slave processor bottleneck)
In Figure 5, horizontal arrows represent disk access and processing operations ; vertical arrows represent ordering
between operations ; gray boxes represent data transfers between PCs. The critical path is represented as a smooth
light-gray line. As in section 3.2, this schedule ensures that all disk transfers but the first one, all network transfers but
the last P (where P is the number of S/P nodes) and all merging operations but the last one are performed while the
S/P node processors perform the neighborhood-independent tile computations.

3.4  Theoretical performance analysis
As described in Figure 5, the critical path in the pipelined-parallel process-and-gather operation consists of one disk
access,  tile processing steps, P network transfers and one MergeAndAddTile operation, where T is the number
of tiles in the window, and P the number of S/P nodes in the architecture. We assume that the tile size does not change
significantly during the neighborhood-independent computation. The time required to read a tile from a disk is writ-
ten as  where ld is the disk latency and 1/τd is the disk throughput. The time required to transfer
data over the network is written as  where ln is the network latency and 1/τn is the network
throughput. The time required to process a tile is written as  where τp is the unitary computation
time and f gives the complexity of the algorithm as a function of the tile size. The time required to merge a tile into
the visualization window is . The duration of the process-and-gather operation is (Equation 1) :
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(1)

The assumptions behind the execution schedule of Figure 5 are that tile accesses are faster than tile processing steps
( ), where D is the number of disks per S/P node), that P network transfer times are faster than a single tile
processing step ( ), and that merging a tile into a window is faster than a network transfer step ( ). 

4  CAP specification of the process-and-gather operation

4.1  The computer-aided parallelization framework
In order to speedup the development of parallel applications and to specify parallel I/O and processing operations at a
high level of abstraction, we use the Computer-Aided Parallelization (CAP) tool. This tool enables application pro-
grammers to hierarchically specify the macro dataflow between operations performed on tiles (file stripe parts).
Operations are segments of sequential code performed by a single execution thread and characterized by input value
and output values. The input and output values of an operation are called tokens. In the context of this paper, tokens
consist of tile data and additional application-dependent parameters. The macro dataflow specifies how tokens are
routed between the operations of the parallel program. In addition, synchronization points (also used for merging
intermediate results) specify which tokens must be available before the next operation can start (Figure 6).

FIGURE 6. Graphical CAP macro dataflow specification
In a graphical CAP specification, parallel operations are displayed as parallel horizontal branches, pipelined opera-
tions are operations located in the same horizontal branch. Figure 6 assumes a parallel program consisting of 4
threads T1, T2, T3, and T4. In the macro data flow graph of Figure 6, the input token enters the graph from the left. It
is divided into two parts, inP1 and inP2, which undergo operations P1 and P2. Operation P1 is performed by thread T1.
Operation P2 is performed by thread T2. The result of operation P1 is outP1. outP1 is divided into three tokens inP3,

inP4, inP5, which undergo operations P3, P4 and P5 in parallel (threads T1, T2 and T3). The results of operations P3, P4
and P5 are merged into a single token, outM1, which is in turn merged with outP2 to form outM2. outM2 is fed to opera-
tion P6. If several tokens enter the macro data flow graph of Figure 6, they are processed in a pipelined fashion.

The CAP specification of a parallel program is described in a simple formal language, an extension of C++. This
specification is translated automatically into a C++ source program. At program startup time, the CAP runtime allo-
cates the program threads to the available processors, using the information stored in a configuration file [1]. The
macro data flow model which underlies the CAP approach has also been used successfully by the creators of the
MENTAT parallel programming language [2]. 

Thanks to the automatic compilation of the parallel application, the application programmer does not need to explic-
itly program the protocols to exchange data between parallel processes and to ensure their synchronization. Further-
more, predefined library operations are available, for example for parallel file storage and access operations.
Combining parallel disk access and processing operations enables the customization of the imaging application
according to the user’s requirements. 

CAP threads are grouped hierarchically. In the context of this paper, the CapServerT thread hierarchy (Program 3) con-
sists of a client thread running on the client node (line 3) and two sets of threads running on the S/P nodes (lines 4 and
5). The TileServer threads perform I/O operations (ReadTile and WriteTile, lines 16 to 19) and the ComputeServer
threads perform computations on the tiles extracted from the disks (e.g. filtering, lines 25 and 26). Each S/P node
comprises one ComputeServer thread and as many TileServer threads as disks. The CapServerT thread hierarchy can
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perform two parallel operations : the process-and-gather and the exchange-process-and-store operations. Section 4.2
and 5.3 specify the behavior of these two operations.

PROGRAM 3. Parallel storage and processing system threads

4.2  Cap specification of the process-and-gather operation
Program 4 is the CAP specification of the process-and-gather operation declared in Program 3, line 7 and 8. This pro-
gram applies in a pipeline-parallel manner a linear filter to all tiles within a window specified by the WindowT Input
class instance. The WindowT class consists of a window position, and a file name (see section 2.2). The CAP pipeline
expression semantics (Program 4, lines 4 to 7) is to perform in parallel the body of the pipeline (lines 5 and 6). The
pipeline expression iteratively calls the GetNextTileInWindow routine (line 4, first pipeline parameter) until it returns 0.
Each token generated by the call is immediately (before the next token is generated) sent to the appropriate TileServer
thread which reads a tile (line 5). The tile is then processed by the ComputeServer thread (line 6). Tiles sent to differ-
ent S/P nodes are processed in parallel. Tiles sent to the same S/P node are processed in pipeline : the TileServer thread
fetches the next tile, while the ComputeServer is processing the previous tile. When a tile has been processed, it is
returned to the Client PC (line 4, third initialization parameter) where it is merged using the MergeTile routine (line 4,
second initialization parameter) into the final window (line 4, fourth initialization parameter). 

PROGRAM 4. CAP process-and-gather operation 
Program 4 performs in a pipeline-parallel manner the operations performed sequentially by Program 2. It specifies all
communications and synchronizations required to implement the execution schedule of Figures 4 and 5. If a single
PC with two disks is available, Program 4 follows the schedule of Figure 4. If two S/P nodes with a total number of 4
disks are available, it follows the schedule of Figure 5.

5  The exchange-process-and-store operation

5.1  Problem description
We consider the situation where the source image resides on disks, and the target image is written to disk(s). Before
filtering can be performed on a tile, tile sides must be exchanged : a tile must receive pixels from its 8 neighboring
tiles. The number of exchanged pixels depends on the filtering operation. The width of the border exchanged between
tiles is defined as w and is application dependent (Figure 7).

We consider that the bottleneck are the processors. We select an execution schedule where the processors are always
busy. We must ensure that the required data to compute a given tile is in memory when the computation starts, i.e. the
required data is read from the disks, and exchanged between the various S/P nodes before the computation is started. 

To achieve this result, we use a three-step pipeline (Figure 8). The first step consists of reading from the disk(s) into
memory data for the next computation step. No data is exchanged between S/P nodes during the first step. The second
step consists of processing tiles. The third step consists of writing back to the disks tiles processed during the previous
computation step. The second pipeline step is itself divided in two parts : (1) each S/P node computes the central part

1 process CapServerT {
2 subprocesses:
3 ClientProcessT Client;
4 TileServerT TileServer[NDISK]; // NDISK:total nb of disks
5 ComputeServerT ComputeServer[NSTOR]; // NSTOR:total nb of
6 operations: // storage/processing nodes
7 ProcessAndGather (FilterT filter)
8 in WindowT Input out WindowT Output;
9 ExchangeProcessAndStore (FilterT filter)
10 in WindowT Input out void Output;
11 ...
12 };
13
14 process TileServerT {
15 operations:
16 ReadTile
17 in TileReadingRequestT Input out TileT Output;
18 Writetile
19 in TileWritingRequestT Input out void Output;
20 ...
21 };
22
23 process ComputeServerT {
24 operations:
25 Filtering (FilterT filter)
26 in TileT Input out TileT Output;
27 };

1 operation CapServerT::ProcessAndGather (FilterT filter)
2 in WindowT Input out WindowT Output
3 {
4 pipeline (GetNextTileInWindow, MergeTile, Client, WindowT Window)
5 (  TileServer[thisTokenP->DiskIndex].ReadTile
6 >-> ComputeServer[thisTokenP->DiskIndex].Filtering (filter)
7 ) 
8 }
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of the tile and in parallel reads the neighboring tiles’ borders from the other S/P nodes ; (2) each S/P node computes
the border of the tile after it has received the neighboring tile sides. The tile central part is defined as the part of the
tile that is not affected by the neighboring tile sides. The tile border is defined as the part of the tile that is affected by
the neighboring tile sides. The index of the S/P node processing a tile is equivalent to the tile disk index. For example,
in Figure 8, tile 3-5 is stored as local tile 52 on disk 2. This tile is processed by S/P node 2. In the present allocation of
tiles to disks, adjacent tiles on the same row are processed by different S/P nodes.

FIGURE 7. Borders exchanged during a neighbourhood dependent operation
Figure 8 shows the activity pattern during a computation step. During the algorithm step of Figure 8, S/P node 0 (resp.
1, 2, 3) reads tile 6-4 (resp. {3-4, 7-4}, {4-4, 8-4}, 5-4) from disk, processes tile 4-2 (resp. 5-2, 6-2, 7-2), and writes
tile 5-1 (resp. 6-1, 7-1, 4-1) to disk. For the next computation step, the activity pattern is shifted one tile to the right.
The CAP environment features a tile cache keeping loaded tiles in memory. The tile cache works according to a LRU
(least-recently used) scheme. Provided that the cache can store at least 24 tiles, the required tiles will all be in memory
during a given computation step. The typical tile size being 50KB, 24 tiles represent 1.2MB allocated on 4 S/P nodes,
well below the typical memory size of current PCs. The additional buffer required for temporary results is not larger
than one tile on each S/P node.

FIGURE 8. Activity pattern among image tiles during a computation step
A number of trade-offs must be taken into considerations :

1. The basic activity pattern can be adapted so that each S/P node processes more than one tile during each computa-
tion step. This reduces the number of synchronizations during the course of the algorithm, but increases the pipe-
line startup cost. 

2. For the same reasons, an increase in tile size reduces the number of synchronizations during the execution of the
algorithm, but increases the pipeline startup cost.

3. As explained in section 2.2, the tile allocation scheme selected in this paper ensures that neighboring tiles are allo-
cated on different S/P nodes, to improve load balancing. This in turn increases the number of communications
required during each computation step. An alternative tile allocation scheme could optimize communications over
load balancing, and would be easy to specify in CAP.

4. Alternative pipelining schemes can be considered. A four step pipeline (reading tile(s) from disk, tile border
exchange, tile processing, writing the tile back to disk) would simplify the processing step, but could increase the
pipeline startup cost.
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5.2  Theoretical performance analysis
During each computation step, four activities are carried out simultaneously. Each S/P node reads on the average one
tile from disk ; communicates with the other S/P nodes to get at most 4 tile sides and 4 tile corners ; computes one
tile:; writes one tile to the disk. Assuming that tile processing operation is a computation intensive operation (as
opposed to data-intensive), we aim to keep the S/P node processors busy at all times by reading in advance data from
the disks.

The time required to read a tile from the disks is written as  where ld is the disk latency and 1/τd
is the disk throughput. The time required to transfer data over the network is written as  where
ln is the network latency and 1/τn is the network throughput. The time required to process a tile is written as

 where τp is the unitary computation time and f gives the complexity of the algorithm as a function
of the tile size. The width of a tile border is defined as w. The number of S/P nodes is defined as P. The number of
disks per S/P node is D. The number of tiles in the window is T. Considering this, the conditions that the processing
time during each step be superior to both the disk access and the network transfer times are formulated as follows
(Equations 2 and 3) :

disk access time < processing time : (2)

network transfer time < processing time : (3)

The pipeline startup cost is the cost of preloading two columns of P+2 tiles. The pipeline termination time is the cost
of writing back one column of P tiles. The total computation time with P S/P nodes consists of the pipeline startup
cost, the computation time, and the pipeline termination time (Equation 4).

(4)

Equation 4 shows that, with 4 S/P nodes, the pipeline startup cost is at most the cost of loading three tiles in memory
(D = 1), and can be reduced to the cost of loading one tile (D >= 3). Provided the number of tiles is large, the relative
startup cost can become very small. The trade-off in the tile size is that (1) the larger the tile size, the smaller the over-
head due to synchronization and communications ; (2) the smaller the tile size, the smaller the overhead due to
pipeline startup cost.

PROGRAM 5. CAP specification of the exchange-process-and-store operation

5.3  CAP specification
Program 5 is the CAP specification of the exchange-process-and-store operation (lines 28 to 38). The program con-
sists of a double sequential iteration. The first loop (lines 32 to 38) iterates on all tile bands in the Input window, a tile
band being a P-tile high horizontal window slice (where P is the number of S/P nodes in the architecture). The second

td ld τd TileSize
2⋅+=

tn ln τn DataSize⋅+=

tp τp f TileSize( )⋅=

ld τd TileSize
2⋅+( ) τp f TileSize( )⋅<

4 ln τn TileSize w⋅ ⋅+( ) 4 ln τn w
2⋅+( )+ τp f TileSize( )⋅<

T 2 P 2+( )
P D⋅--------------------- td⋅ T

P
--- tp⋅ td+ +=

1 operation CapServerT::TileFiltering (FilterT filter, int P, int i, int j, int k)
2 in WindowT Input
3 out void Output
4 {
5 parallel (ComputeServer[k], TileBordersT Result) (
6 ( void, GetTileBordersFromNeighbours (P, i, j, k), SetTilesBorders )
7 ( void, ComputeServer[k].ProcessTileCentralPart, void )
8 ) >->
9 ComputeServer[k].ProcessTileBorders ;

10 }
11
12 operation CapServerT::ComputationStep (FilterT Filter, int P, int i, int j)
13 in WindowT Input
14 out void Output
15 {
16 parallel (Client, void Result)
17 ( DuplicateWindow, GetNextStepTiles (P, i, j), void )
18 ( DuplicateWindow, SavePreviousStepTiles (P, i, j), void )
19 ( DuplicateWindow
20 , indexed 
21 (int k = 0 ; k < P ; k++ )
22 parallel ( DuplicateWindow, void, Client, void Result )
23 ( ComputeServer[k].TileFiltering (filter, i+k, j) )
24 , void
25 ) ;
26 }
27
28 operation CapServerT::ExchangeProcessAndStore (FilterT filter, int P)
29 in WindowT Input 
30 out void Output
31 {
32 for ( int i = 0 ; i < VerticalNumberOfBands (Input) ; i += P )
33 ( GetNextStepTiles (P, i, -2)
34 >-> GetNextStepTiles (P, i, -1)
35 >-> for (int j = 0 ; j < HorizontalNumberOfBands (Input) ; j++) 
36 ( ComputationStep (filterT, P, i, j)
37 >-> SavePreviousStepTiles (P, i, HorizontalNumberOfTiles (Input))
38 ) ;
39 }
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loop iterates on all vertical tile slices within a single tile band. Before each step of the first iteration can start, we must
ensure that all the required tiles are in memory (lines 32 and 33). After each step of the first iteration, we must write
back the P tiles of the last window column (line 37). 

PROGRAM 6. GetNextStepTiles and SavePreviousStepTiles operations
Each computation step (lines 12 to 26) consists of three parts, performed in parallel : get the tiles for the next compu-
tation step (line 17) ; save the tiles computed during the previous iteration (line 18) ; let each of the compute servers
apply the filter to one tile (lines 20 to 23). The parallel construct semantics (line 16 to 25) is to initialize in the client
address space (line 16, first initialization parameter) a void output token for synchronization purpose (line 16, second
initialization parameter) and perform in parallel the three construct bodies (line 17, line 18, and line 19 to 24). Each
parallel-construct body consists of three parts : a split-function name, a CAP expression, and a merge-function name.
The split-function indicates how to create the parallel-construct body-input token from the parallel-construct input
token. The merge-function indicates how to merge the parallel-construct body-output token into the parallel-construct
output-token. At line 17, the split-function WindowDuplicate duplicates the window parameters ; the merge-function is
void, indicating that the parallel-construct body-output is used for synchronization purposes only. The third parallel-
construct body (lines 20 to 24) is itself a CAP instruction, the indexed-parallel expression. The indexed parallel
expression executes in parallel instances of its body (line 23), as many times as expressed in the index specification
(line 23). 

The tile filtering process consists of in parallel applying the filter to the tile central part (line 7) and fetching the tile
sides from the neighboring S/P nodes (line 6). Once the tile borders have been fetched, the filter can also be applied to
the tile borders (line 9).

PROGRAM 7. GetTileSidesFromNeighbours operation
The input token to the exchange-process-and-store operation is a window description (image name, size, position, but
no data). The window description is duplicated and sent to each compute server (DuplicateWindow routine, lines 19
and 22). A copy of the window is also sent to the routine in charge of getting the next step tiles (line 17) and saving
the previous step tiles (line 18). The CAP procedures for fetching the next step tiles, saving the previous step tiles and
getting the tile sides from the neighboring S/P nodes are specified in programs 6 and 7.

Program 6 describes the GetNextStepTiles and SavePreviousStepTiles operations. The GetNextStepTiles operation con-
sists of reading in parallel from disk all tiles related to a given computation step described by indices i and j. There are
P+2 tiles involved in the GetNextStepTiles, indexed from -1 to P. The GetTileIndices routine returns the disk index and
the local tile index on the disk for each tile. It sets the disk index to -1 for tiles outside the visualization window. The

1 operation CapServerT::GetNextStepTiles (int P, int i, int j)
2 in WindowT Input
3 out void Output
4 {
5 indexed
6 (int k = -1 ; k <= P ; k++ )
7 parallel ( GetTileIndices (P, i, j+1, k), void, Client, void Result )
8 ( if (thisTokenP->DiskIndex != -1)
9  ( TileServer[thisTokenP->DiskIndex].ReadTile )

10 ) ;
11 }
12
13 operation CapServerT::SavePreviousStepTiles (int P, int i, int j)
14 in WindowT Input
15 out void Output
16 {
17 indexed
18 (int k = 0 ; k < P ; k++ )
19 parallel ( GetTileIndices (P, i, j-1, k), void, Client, void Result )
20 ( if (thisTokenP->DiskIndex != -1)
21  ( TileServer[thisTokenP->DiskIndex].WriteTile )
22 ) ;
23 }

1 enum NeighbourT {
2 TopNeighbour, TopRightNeighbour, RightNeighbour, BottomRightNeighbour,
3 BottomNeighbour, BottomLeftNeighbour, LeftNeighbour, TopLeftNeighbour
4 } ;
5
6 token TokenBordersT {
7 DataT Sides[8] ;
8 } ;
9
10 operation CapServerT::GetTileBordersFromNeighbours (int P, int i, int j, int k)
11 in void Input
12 out TileBordersT Output
13 {
14 indexed
15 ( NeighbourT n = TopNeighbour ; n <= TopLeftNeighbour ; n++ )
16 parallel ( void, SetBorder (n), ComputeServer[k], TileBordersT Result ) (
17 ( TileServer[DiskIndex(P,i,j,k,n)].GetBorder (P,i,j,k,n) ) ;
18 }
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CAP if construct checks that the disk index is not -1 (line 8) before calling the appropriate TileServer thread. The
SavePreviousStepTiles consists of writing in parallel all tiles from a previous computation step (lines 13 to 23).

Program 7 is the CAP specification of the GetTileSidesFromNeighbours operations. It consists of fetching from neigh-
boring tiles in parallel the appropriate tile side or corner. The index of the neighbor that stores a tile is given by the
DiskIndex function. Each tile server supports a GetBorder operation (line 17) which reads a tile part, and returns it as
its output token. The tokens are transferred to ComputeServer[k] (line 16, third indexed-parallel parameter) which
requested the tile parts and gathered using the SetBorder routine into a single TileBordersT token.

6  Performance results

(* In this section we will present and discuss performance results, and compare them to the theoretical models of sec-
tions 3.4 and 5.2. *)

7  Conclusions

This paper shows that CAP enables the compact specification of pipelined-parallel imaging applications. The CAP
environment is not restricted to the process-and-gather and exchange-process-and-store operations described in this
paper. It can be applied to any imaging algorithm, including non-oblivious algorithms4. Once the imaging library is
available, the implementation and test effort for the two applications described in this paper is of the order of days.
The generated programs run on PCs under WindowsNT and on Sun workstations under Solaris. With a limited effort,
reusable and customizable parallel code can be produced. The programs generated use as runtime systems either the
MPS communication library developed by the authors, or the familiar PVM communication package. 

(* comments on the performance results *)

The CAP imaging library supports the subdivision of images in tiles. The CAP language handles the communication
and synchronization of messages in a parallel program. These two features of the CAP environment free the program-
mer to concentrate on the algorithm(s) to be applied to the image. Once the algorithm has been designed, the pro-
grammer can either reuse existing CAP programs and modify the processing operation performed on each tile, or
create new CAP programs to handle new parallel execution schedules.

The CAP language has also been applied to the parallelization of linear algebra algorithms (matrix multiplication and
LU decomposition), and to the visualization of 3-D tomographic images. In the field of linear algebra, speedups of 18
with 20 processing nodes, and 8.4 with 10 processing nodes have been demonstrated for the matrix multiplication and
the LU factorization respectively. The experimental analysis of the parallel 3-D tomographic imaging application
(plane extraction) has shown that the application achieves near linear speed-ups for a hardware architecture consisting
of up to 4 PCs (3 S/P nodes and a client) and up to 27 disks working in pipeline parallel fashion. Both applications
have demonstrated that the overhead of CAP is very low.
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