2,626 research outputs found
Bulletin 114 - The Training of Public School Art Teachers
https://thekeep.eiu.edu/eiu_bulletin/1205/thumbnail.jp
On the Evolution of Thermonuclear Flames on Large Scales
The thermonuclear explosion of a massive white dwarf in a Type Ia supernova
explosion is characterized by vastly disparate spatial and temporal scales. The
extreme dynamic range inherent to the problem prevents the use of direct
numerical simulation and forces modelers to resort to subgrid models to
describe physical processes taking place on unresolved scales.
We consider the evolution of a model thermonuclear flame in a constant
gravitational field on a periodic domain. The gravitational acceleration is
aligned with the overall direction of the flame propagation, making the flame
surface subject to the Rayleigh-Taylor instability. The flame evolution is
followed through an extended initial transient phase well into the steady-state
regime. The properties of the evolution of flame surface are examined. We
confirm the form of the governing equation of the evolution suggested by
Khokhlov (1995). The mechanism of vorticity production and the interaction
between vortices and the flame surface are discussed. The results of our
investigation provide the bases for revising and extending previous
subgrid-scale model.Comment: 15 pages, 22 postscript figures. Accepted for publication by the
Astrophysical Journal. High resolution figures can be found at
http://flash.uchicago.edu/~zhang/research_paper.htm
Polymorphism of the tumor necrosis factor beta gene in systemic lupus erythematosus
We investigated the Nco I restriction fragment
length polymorphism (RFLP) of the tumor necrosis
factor beta (TNFB) gene in 173 patients with systemic
lupus erythematosus (SLE), 192 unrelated
healthy controls, and eleven panel families, all of German
origin. The phenotype frequency of the TNFB*I
allele was significantly increased in patients compared
to controls (63.6% vs 47.1%, RR = 1.96, p <0.002).
The results of a two-point haplotype statistical analysis
between TNFB and HLA alleles show that there is linkage
disequilibrium between TNFB*I and HLA-A1,
Cw7, B8, DR3, DQ2, and C4A DE. The frequency of
TNFB*I was compared in SLE patients and controls in
the presence or absence of each of these alleles.
TNFB*I is increased in patients over controls only in
the presence of the mentioned alleles. Therefore, the
whole haplotypeA1, Cw7, B8, TNFB* I, C4A DE, DR3,
DQ2 is increased in patients and it cannot be determined
which of the genes carried by this haplotype is
responsible for the susceptibility to SLE. In addition,
two-locus associations were analyzed in 192 unrelated
healthy controls for TNFB and class I alleles typed by
serology, and for TNFB and class II alleles typed by
polymerase chain reaction/oligonucleotide probes. We
found positive linkage disequilibrium between
TNFB*I and the following alleles: HLA-A24, HLA-B8,
DRBI*0301, DRBI*ll04, DRBI*1302, DQAI*0501, DQBI*0201, DQBI*0604, and DPBI*OIO1. TNFB*2
is associated with HLA-B7, DRBI*1501, and
DQB I *0602
Investigations into the Sarcomeric Protein and Ca2+-Regulation Abnormalities Underlying Hypertrophic Cardiomyopathy in Cats (Felix catus).
Hypertrophic cardiomyopathy (HCM) is the most common single gene inherited cardiomyopathy. In cats (Felix catus) HCM is even more prevalent and affects 16% of the outbred population and up to 26% in pedigree breeds such as Maine Coon and Ragdoll. Homozygous MYBPC3 mutations have been identified in these breeds but the mutations in other cats are unknown. At the clinical and physiological level feline HCM is closely analogous to human HCM but little is known about the primary causative mechanism. Most identified HCM causing mutations are in the genes coding for proteins of the sarcomere. We therefore investigated contractile and regulatory proteins in left ventricular tissue from 25 cats, 18 diagnosed with HCM, including a Ragdoll cat with a homozygous MYBPC3 R820W, and 7 non-HCM cats in comparison with human HCM (from septal myectomy) and donor heart tissue. Myofibrillar protein expression was normal except that we observed 20–44% MyBP-C haploinsufficiency in 5 of the HCM cats. Troponin extracted from 8 HCM and 5 non-HCM cat hearts was incorporated into thin filaments and studied by in vitro motility assay. All HCM cat hearts had a higher (2.06 ± 0.13 fold) Ca2+-sensitivity than non-HCM cats and, in all the HCM cats, Ca2+-sensitivity was not modulated by troponin I phosphorylation. We were able to restore modulation of Ca2+-sensitivity by replacing troponin T with wild-type protein or by adding 100 μM Epigallocatechin 3-gallate (EGCG). These fundamental regulatory characteristics closely mimic those seen in human HCM indicating a common molecular mechanism that is independent of the causative mutation. Thus, the HCM cat is a potentially useful large animal model
Ascertaining the Core Collapse Supernova Mechanism: An Emerging Picture?
Here we present the results from two sets of simulations, in two and three
spatial dimensions. In two dimensions, the simulations include multifrequency
flux-limited diffusion neutrino transport in the "ray-by-ray-plus"
approximation, two-dimensional self gravity in the Newtonian limit, and nuclear
burning through a 14-isotope alpha network. The three-dimensional simulations
are model simulations constructed to reflect the post stellar core bounce
conditions during neutrino shock reheating at the onset of explosion. They are
hydrodynamics-only models that focus on critical aspects of the shock stability
and dynamics and their impact on the supernova mechanism and explosion. In two
dimensions, we obtain explosions (although in one case weak) for two
progenitors (11 and 15 Solar mass models). Moreover, in both cases the
explosion is initiated when the inner edge of the oxygen layer accretes through
the shock. Thus, the shock is not revived while in the iron core, as previously
discussed in the literature. The three-dimensional studies of the development
of the stationary accretion shock instability (SASI) demonstrate the
fundamentally new dynamics allowed when simulations are performed in three
spatial dimensions. The predominant l=1 SASI mode gives way to a stable m=1
mode, which in turn has significant ramifications for the distribution of
angular momentum in the region between the shock and proto-neutron star and,
ultimately, for the spin of the remnant neutron star. Moreover, the
three-dimensional simulations make clear, given the increased number of degrees
of freedom, that two-dimensional models are severely limited by artificially
imposed symmetries.Comment: 9 pages, 3 figure
Simulation of the Spherically Symmetric Stellar Core Collapse, Bounce, and Postbounce Evolution of a 13 Solar Mass Star with Boltzmann Neutrino Transport, and Its Implications for the Supernova Mechanism
With exact three-flavor Boltzmann neutrino transport, we simulate the stellar
core collapse, bounce, and postbounce evolution of a 13 solar mass star in
spherical symmetry, the Newtonian limit, without invoking convection. In the
absence of convection, prior spherically symmetric models, which implemented
approximations to Boltzmann transport, failed to produce explosions. We are
motivated to consider exact transport to determine if these failures were due
to the transport approximations made and to answer remaining fundamental
questions in supernova theory. The model presented here is the first in a
sequence of models beginning with different progenitors. In this model, a
supernova explosion is not obtained. We discuss the ramifications of our
results for the supernova mechanism.Comment: 5 pages, 3 figures, Submitted to Physical Review Letter
- …