65 research outputs found

    Robust Predictive Control using a GOBF Model for MISO Systems

    Get PDF
    In this paper we develop a new method for robust predictive control for MISO systems represented on the Generalized Orthonormal Basis Functions. Unknown But Bounded Error approaches are used to update the uncertainty domain of the resultant model coefficients. This method uses a worst case strategy solved by a min-max optimization problem taking into account the constraints relative to parameter uncertainties and to measurement signals

    Objects Detection by Singular Value Decomposition Technique in Hybrid Color Space: Application to Football Images

    Get PDF
    In this paper, we present an improvement non-parametric background modeling and foreground segmentation. This method is important; it gives the hand to check many states kept by each background pixel. In other words, generates the historic for each pixel, indeed on certain computer vision applications the background can be dynamic; several intensities were projected on the same pixel. This paper describe a novel approach which integrate both Singular Value Decomposition (SVD) of each image to increase the compactness density distribution and hybrid color space suitable to this case constituted by the three relevant chromatics levels deduced by histogram analysis. In fact the proposed technique presents the efficiency of SVD and color information to subtract background pixels corresponding to shadows pixels. This method has been applied on colour images issued from soccer video. In the other hand to achieve some statistics information about players ongoing of the match (football, handball, volley ball, Rugby...) as well as to refine their strategy coach and leaders need to have a maximum of technical-tactics information. For this reason it is prominent to elaborate an algorithm detecting automatically interests color regions (players) and solve the confusion problem between background and foreground every moment from images sequence

    Finite Time Stabilization of the Four Tanks System: Extensions to the Uncertain Systems

    Get PDF
    We consider the finite time stability and stabilization of linear systems described in continuous time. First, we provide a condition for the stability over time using the state transition matrix standard. Then we give conditions to design a state feedback control that stabilizes the system over time. In some cases where there is uncertainty in the system model, the previous conditions are extended to a certain class of uncertain systems. The considered uncertainties are the polytopic and norm bounded ones. To reveal the proposed approach, an application to the four tanks system was made

    Observation et commande des systèmes linéaires dans les domaines temporel et fréquentiel

    No full text
    Dans ce mémoire, nous nous sommes intéressés aux problèmes d'estimation, de filtrage H-infini mais aussi à la commande via un observateur dans les domaines temporel et fréquentiel, aussi bien pour les systèmes linéaires standards que pour les systèmes algèbro-différentiels plus généraux appelés systèmes singuliers. Le fil conducteur de notre démarche a été de proposer des résultats facilement implémentables et de couvrir la classe la plus large possible des systèmes linéaires. Ainsi, nous avons commencé notre travail en proposant des méthodes de synthèse d'observateurs à entrées inconnues pour des systèmes sans et avec retard, sujet à des entrées totalement inconnues. Nous cherchons ici à éliminer l'effet des entrées inconnues sur la dynamique de l'erreur d'observation. La synthèse temporelle est basée sur des LMIs permettant de déterminer la matrice de gain paramétrant toutes les matrices de l'observateur. L'approche LMI est en fait déduite de différents lemmes bornés qui eux mêmes se basent sur l'approche Lyapunov. La synthèse fréquentielle est déduite de celle temporelle en proposant des MFDs judicieuses et en utilisant l'approche de factorisation. Ensuite, nous avons proposé des filtres qui permettent d'assurer, en plus de la stabilité, un critère de performance H-infini, c'est à dire que nous cherchons à atténuer l'effet des perturbations, supposées être inconnues mais à énergie bornée, sur la dynamique de l'erreur d'estimation. L'un des principaux apports de nos travaux, a été de proposer une nouvelle écriture de la dynamique de l'erreur d'estimation sous forme singulières afin de contourner le problème de l'apparition de la dérivée des perturbations dans la dynamique de l'erreur d'estimation. Ainsi, nous sommes arrivés à relaxer les contraintes qui existent généralement sur les matrices des filtres non biaisés synthétisés; c'est à dire, des filtres dont la dynamique de l'erreur d'estimation ne dépend pas explicitement de l'état x(t) du système et de l'entrée u(t). La méthode fréquentielle est déduite de celle temporelle en utilisant l'approche de factorisation. Il est à noter que cette description fréquentielle, entrée-sortie, pourra permettre une implémentation aisée dans le domaine fréquentiel lorsque nous nous trouvons dans une situation où celle-ci est la plus indiquée. Enfin, nous nous sommes intéressés à l'application des méthodes d'estimation proposées dans le cadre de la commande. En effet, dans un premier temps, nous proposons une synthèse directe d'une commande basée sur un filtre H-infini directement dans le domaine fréquentiel pour des systèmes linéaires standards. Ensuite, nous nous focalisons sur les systèmes singuliers aussi bien dans le cas continu que discret et nous proposons de déterminer des lois de commande en utilisant un filtre fonctionnel qui satisfait un critère de performance H-infini. En effet, nous cherchons d'abord à calculer le gain de retour d'état qui nous permet de remplir les spécifications du système bouclé (stabilité,...). Puis, nous synthétisons un filtre qui a pour but de fournir en sortie une estimée de ce retour d'état.In this dissertation, we investigated the problems of the estimation but also the controller based-observer design in the time and frequency domains, for both standard linear systems and more general systems algebro-differentials ones also called singular systems. The goal of our approach is to propose easily implementable results and to cover the largest possible class of linear systems. So, we began to propose methods for unknown inputs observers design for linear systems without and with delay, subject to unknown inputs which can result from noise, sensors and actuators faults ... We search here to decouple the unknown inputs and the dynamics of the observation error. The time domain method is based on LMIs permitting to find the gain matrix implemented in the observer matrices. The LMI approach is deduced from various bounded lemmas which themselves are based on Lyapunov approach. The frequency domain synthesis is derived from time domain results by defining suitable MFDs and using the factorization approach. We then propose, filters that permits to ensure, in addition to the stability, an H-infinity performance criteria, i.e we search to attenuate the perturbations effect, supposed unknown but of bounded energy, on the dynamics of the estimation error. One of the main contributions of our work, is to propose a new writing of the error dynamics in a singular form in order to avoid the time derivative of the disturbance in the error dynamics. So, the constraints that generally exist on the matrices of synthesized unbiased filters can be relaxed, i.e filters, that they do not depend explicitly on the state x(t) of the system and on the input u(t). The frequency method is deduced from time domain approach by using the factorisation approach. It should be noted that this frequency domain description, (input-output) representation, may allow an easy implementation in the frequency domain when it is recommended. Finally, we apply the proposed estimation methods to control purpose. In fact, in a first part, we propose a new direct synthesis of a controller based on a H-infinity filter directly in the frequency domain for standard linear systems. Then, we focus our attention on singular systems for both continuous and discrete cases and we propose to search for a linear control law using a functional filter which ensures an H-infinity performance criteria. Our approach is obtained into two steps. In fact, first, we search for a linear control law which ensures some specifications for the closed loop system (stability,...). The state feedback is seen as a functional of the state and is then estimated using our previous results on the H-infinity filtering.NANCY1-Bib. numérique (543959902) / SudocSudocFranceF

    Observation et commande des systèmes de grande dimension

    No full text
    Dans ce mémoire, on s'est intéressé aux problèmes d'estimation, de filtrage HH_{\infty} et de la commande basée observateur des systèmes de grande dimension. L'étude porte sur les systèmes linéaires standards mais aussi sur les systèmes algèbro-différentiels appelés aussi systèmes singuliers pour couvrir la classe la plus large possible des systèmes de grande dimension. Ainsi, on a commencé notre travail en proposant des méthodes de synthèse d'observateurs décentralisés à interconnexions inconnues pour des systèmes de grande dimension standards et singuliers. On a cherché à éliminer l'effet des interconnections inconnues sur la dynamique de l'erreur d'observation. La synthèse de l'observateur est basée sur des LMIs permettant de déterminer la matrice de gain paramétrant toutes les matrices de l'observateur. La formulation LMI est basée sur l'approche Lyapunov et déduite des différents lemmes bornés. Ensuite, on a proposé des filtres décentralisés qui permettent d'assurer, en plus de la stabilité, un critère de performance HH_{\infty}, c'est à dire qu'on a cherché à atténuer l'effet des perturbations, supposées être inconnues mais à énergie bornée, sur la dynamique de l'erreur d'estimation. On a abordé après l'étude des observateurs interconnectés pour les systèmes de grande dimension, où on a proposé une nouvelle méthode permettant de synthétiser une nouvelle forme d'observateurs interconnectés connectivement stable. On s'est intéressé à la capacité d'un tel observateur à être stable de manière robuste vis-a-vis des incertitudes sur les interconnexions entre les sous observateurs qui les forment. Enfin, on s'est intéressé à l'application des méthodes d'estimation proposées dans le cadre de la commande. En effet, dans un premier temps, on a proposé une commande décentralisée basée sur un filtre HH_{\infty} pour une classe de systèmes de grande dimension standards à interconnections non-linéaires. L'approche est une extension des travaux de Kalsi et al. aux cas des systèmes perturbés standards. En effet, on a commencé par le calcul du gain de retour d'état qui satisfait les spécifications du système bouclé. Puis, on a synthétisé un filtre qui a pour but de fournir en sortie une estimée de ce retour d'état. L'approche a été validée sur un exemple de système composé de trois machines électriques interconnectées. Dans le second volet du chapitre, on a considéré le problème de la commande via un filtre HH_{\infty} pour une classe de système singulier de grande dimension soumis à des perturbations à énergie bornée. L'approche est une extension des travaux de Kalsi et al. au cas des systèmes singuliers perturbés. L'un des principaux apports de nos travaux, a été de proposer une nouvelle méthode de synthèse de commande basée sur un filtre HH_{\infty} qui générée par des conditions de solvabilité moins restrictives que celles introduites dans les travaux de Kalsi et al. Ainsi, on a relaxé les contraintes qui portait sur la distance entre la paire de matrices formée par la matrice d'état et la matrice d'entrée d'une part et l'ensemble de paires de matrices incontrôlables d'autre part. De plus, on tient compte de la maximisation des bornes de l'interconnexion, ce qui est très important en pratiqueIn this dissertation, we investigated the problems of the estimation, HH_{\infty} filtering and the controller based-observer design for standard large scale systems and for algebro-differentials ones called also singular large scale systems. So, we began to propose methods for decentralized observer design with unknown interconnections for standard and singular systems. We search here to decouple the unknown interconnections and the dynamics of the observation error. The method is based on LMIs approach to find the gain matrix implemented in the observer matrices. The LMI formulation is based on Lyapunov approach and deduced from various bounded lemmas. We propose then, filters that permits to ensure, in addition to the stability, an HH_{\infty} performance criteria; we search to attenuate the perturbations effect, supposed unknown but of bounded energy, on the dynamics of the estimation error. We discussed after the study of interconnected observers for large systems, we have proposed a new method to design a new form of interconnected observers connectively stable. We are interested in the ability of a such observer to be robustly stable towards uncertainties in the interconnections between sub-observers. Finally, we are interested to the application of the proposed estimation methods to the control purpose. Indeed, in a first step, we propose a decentralized control based on a filter HH_{\infty} for a class of large scale standard systems with nonlinear interconnections. Then, Then, we focus our attention on the observer based control for singular systems to search for a control law which ensures an HH_{\infty} performance criteria. The approach is an extension of recent works of Kalsi and al. to the case of disturbed large scale systems. One of the main contributions of our work was to propose a new method of control design based on a filter HH_ {\infty} which generated by using less restrictive conditions than those introduced in the work of Kalsi and al. Thus, we have relaxed the constraint on the distance between the pair of matrices formed by the state matrix and input matrix and the set of pairs of matrices uncontrollable. In addition, we consider the maximization of the bound of the interconnection, which is very important in practice. Our approach is obtained into two steps. The first one consist on calculating the gain state feedback that meets the specifications of the closed loop system. The second one , then we reconstruct this control law using our previous results on the HH_{\infty} filtering. The approach has been validated on an example of a system composed of three interconnected electrical machinesMETZ-SCD (574632105) / SudocNANCY1-Bib. numérique (543959902) / SudocNANCY2-Bibliotheque electronique (543959901) / SudocNANCY-INPL-Bib. électronique (545479901) / SudocSudocFranceF

    Modélisation et identification de systèmes non-linéaires à l'aide de modèles de volterra à complexité réduite

    No full text
    The identification of the non-linear dynamic systems from a set of input/output data is of a fundamental importance for the practical applications since a lot of physical systems possess non linear characteristics. The structure of the Volterra model can be used to represent a general class of non linear systems. However, the use of such a representation is often limited because of the huge number of parameters relative to such a structure. To overcome this inconvenience, several solutions are proposed in this thesis. The first uses expansions of the different kernels on orthogonal bases functions. The second is based on the use of techniques calling on reduced-order decompositions of the tensors associated to the kernels of order superior or equal to three. Various bases of functions (Laguerre, Kautz and Generalized Orthogonal Bases (BOG)) are first studied then to use them for the modelling the linear systems then for the representation of the kernels of the Volterra models. The problem of identification includes several parts: determination of the poles of the orthogonal bases functions, the order of the kernel developments, the Fourier coefficients of the development and the relative uncertainty to these coefficients. A state representation associated to a development on a Generalized Orthogonal Basis is developed and then used for the construction of the output predictor of the system to be modelled. Then, several tensorial decompositions are studied. The PARAFAC decomposition is specially considered. Reduced complexity Volterra models inspired from this technique are proposed. While considering the quadratic Volterra kernel as a matrix and the other kernels as tensors of orders superior to two, we use a singular value decomposition for the quadratic kernel and the PARAFAC decomposition for the kernels of orders superior to two in order to construct a new model called SVD-PARAFAC based Volterra model. A new algorithm called ARLS (Alternating Recursive Least Squares) is presented. This algorithm essentially based on the technical RLS applied in an alternate manner estimates the parameters of such Volterra models. Finally, new methods of robust identification called bounded error techniques are presented. They are used for the identification of linear models based on an expansion on a GOB, this work aims to use the results found lately for uncertain linear systems in the case of the uncertain non linear systems. One of the techniques of identification, the polytopic approach is especially considered. This approach allows to estimate the uncertainty intervals of the Fourier coefficients of the expansion on the different GOBs studied. The polytopic approach is also used in order to identify the uncertainty intervals of the parameters of the SVD-PARAFAC based Volterra model. The proposed methods allows to achieve an important numeric complexity reduction and a considerable gain in time calculation.L'identification des systèmes dynamiques non linéaires à partir d'un ensemble de données entrée/sortie est d'une importance fondamentale pour les applications pratiques puisque beaucoup de systèmes physiques possèdent des caractéristiques non linéaires. La structure du modèle de Volterra peut être utilisée pour représenter une classe générale de systèmes non linéaires. Cependant, l'usage pratique d'une telle représentation est souvent limité à cause du grand nombre de paramètres associé à une telle structure. Pour pallier à cet inconvénient, plusieurs solutions sont proposées dans cette thèse. La première utilise des développements en série des différents noyaux sur des bases de fonctions orthogonales. La deuxième est basée sur l'utilisation de techniques faisant appel à des décompositions d'ordre réduit des tenseurs relatifs aux noyaux d'ordre supérieur ou égal à trois. Diverses bases de fonctions (Laguerre, Kautz et Bases Orthogonales Généralisées (BOG)) sont tout d'abord étudiées en vue de leur utilisation pour la modélisation des systèmes linéaires puis pour la représentation des noyaux de modèle de Volterra. Le problème d'identification comporte plusieurs volets : détermination des pôles caractéristiques des bases de fonctions orthogonales, de l'ordre des développements des différents noyaux, des coefficients de Fourier du développement et de l'incertitude relative à ces coefficients. Une représentation d'état associée à un développement sur une base de fonctions orthogonales généralisées est développée puis utilisée pour la construction de prédicteurs de la sortie du système ainsi modélisé. Ensuite, plusieurs décompositions tensorielles sont étudiées. La décomposition PARAFAC est plus particulièrement considérée. Des modèles de Volterra à complexité réduite inspirés de cette technique sont proposés. En considérant le noyau quadratique de Volterra comme une matrice et les autres noyaux comme des tenseurs d'ordres supérieurs à deux, nous utilisons une décomposition à l'aide des valeurs singulières (SVD) pour le noyau quadratique et la décomposition PARAFAC pour les noyaux d'ordres supérieurs à deux afin de construire le modèle réduit de Volterra appelé SVD-PARAFAC-Volterra. Un nouvel algorithme appelé ARLS (Alternating Recursive Least Squares) est présenté. Cet algorithme essentiellement basé sur la technique RLS appliquée d'une manière alternée estime les paramètres de tels modèles de Volterra. Enfin, de nouvelles méthodes d'identification robuste dites à erreur bornée sont présentées. Elles sont utilisées pour l'identification de modèles linéaires issus des BOG, travail qui vise à étendre au cas des systèmes non linéaires incertains des résultats obtenus récemment pour des systèmes linéaires incertains. Parmi les techniques d'identification à erreur bornée présentées, l'approche polytopique est plus particulièrement considérée. Cette approche nous permet d'estimer les intervalles d'incertitude des coefficients de Fourier du développement sur les différentes bases orthogonales étudiées. Ces mêmes méthodes d'identification sont utilisées aussi afin d'identifier les intervalles d'incertitude des paramètres du modèle SVD-PARAFAC-Volterra. Les méthodes proposées permettent de réaliser une importante réduction de complexité numérique et un gain en temps de calcul considérables.NICE-BU Sciences (060882101) / SudocSudocFranceF
    corecore